Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Org Biomol Chem ; 13(20): 5608-12, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25881971

ABSTRACT

A synthesis procedure for heteroatom-substituted tetra(3,4-pyrido)porphyrazines that absorb light near 800 nm was developed. Based on the observed relationships between the structure and photophysical parameters, a novel highly photodynamically active (IC50 = 0.26 µM) compound was synthesized and biologically characterized.


Subject(s)
Light , Macrocyclic Compounds/chemistry , Photochemistry , Porphyrins/chemistry , Molecular Structure , Spectroscopy, Near-Infrared , Structure-Activity Relationship
2.
J Exp Bot ; 64(14): 4575-87, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24006426

ABSTRACT

TPX2 performs multiple roles in microtubule organization. Previously, it was shown that plant AtTPX2 binds AtAurora1 kinase and colocalizes with microtubules in a cell cycle-specific manner. To elucidate the function of TPX2 further, this work analysed Arabidopsis cells overexpressing AtTPX2-GFP. Distinct arrays of bundled microtubules, decorated with AtTPX2-GFP, were formed in the vicinity of the nuclear envelope and in the nuclei of overexpressing cells. The microtubular arrays showed reduced sensitivity to anti-microtubular drugs. TPX2-mediated formation of nuclear/perinuclear microtubular arrays was not specific for the transition to mitosis and occurred independently of Aurora kinase. The fibres were not observed in cells with detectable programmed cell death and, in this respect, they differed from TPX2-dependent microtubular assemblies functioning in mammalian apoptosis. Colocalization and co-purification data confirmed the interaction of importin with AtTPX2-GFP. In cells with nuclear foci of overexpressed AtTPX2-GFP, strong nuclear signals for Ran and importin diminished when microtubular arrays were assembled. This observation suggests that TPX2-mediated microtubule formation might be triggered by a Ran cycle. Collectively, the data suggest that in the acentrosomal plant cell, in conjunction with importin, overexpressed AtTPX2 reinforces microtubule formation in the vicinity of chromatin and the nuclear envelope.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Nucleus/metabolism , Centrosome/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Plant Cells/metabolism , Apoptosis , Arabidopsis/cytology , Arabidopsis/enzymology , Aurora Kinases/metabolism , Chromatin/metabolism , Computer Simulation , Green Fluorescent Proteins/metabolism , Imaging, Three-Dimensional , Karyopherins/metabolism , Mitosis , Nuclear Envelope/metabolism , Protein Transport , Subcellular Fractions/metabolism , Tubulin/metabolism
3.
Dalton Trans ; 41(38): 11651-6, 2012 Oct 14.
Article in English | MEDLINE | ID: mdl-22832706

ABSTRACT

Intramolecular charge transfer (ICT) was studied on a series of magnesium, metal-free and zinc complexes of unsymmetrical tetrapyrazinoporphyrazines and tribenzopyrazinoporphyrazines bearing two dialkylamino substituents (donors) and six alkylsulfanyl or aryloxy substituents (non-donors). The dialkylamino substituents were responsible for ICT that deactivated excited states and led to considerable decrease of fluorescence and singlet oxygen quantum yields. Photophysical and photochemical properties were compared to corresponding macrocycles that do not bear any donor centers. The data showed high feasibility of ICT in the tetrapyrazinoporphyrazine macrocycle and significantly lower efficiency of this deactivation process in the tribenzopyrazinoporphyrazine type molecules. Considerable effect of non-donor peripheral substituents on ICT was also described. The results imply that tetrapyrazinoporphyrazines may be more suitable for development of new molecules investigated in applications based on ICT.


Subject(s)
Indoles/chemistry , Singlet Oxygen/chemistry , Coordination Complexes/chemistry , Isoindoles , Magnesium/chemistry , Quantum Theory , Singlet Oxygen/metabolism , Spectrometry, Fluorescence
4.
BMC Plant Biol ; 12: 83, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22676313

ABSTRACT

BACKGROUND: RanBPM (Ran-binding protein in the microtubule-organizing centre) was originally reported as a centrosome-associated protein in human cells. However, RanBPM protein containing highly conserved SPRY, LisH, CTLH and CRA domains is currently considered as a scaffolding protein with multiple cellular functions. A plant homologue of RanBPM has not yet been characterized. RESULTS: Based on sequence similarity, we identified a homologue of the human RanBPM in Arabidopsis thaliana. AtRanBPM protein has highly conserved SPRY, LisH, CTLH and CRA domains. Cell fractionation showed that endogenous AtRanBPM or expressed GFP-AtRanBPM are mainly cytoplasmic proteins with only a minor portion detectable in microsomal fractions. AtRanBPM was identified predominantly in the form of soluble cytoplasmic complexes ~230-500 kDa in size. Immunopurification of AtRanBPM followed by mass spectrometric analysis identified proteins containing LisH and CRA domains; LisH, CRA, RING-U-box domains and a transducin/WD40 repeats in a complex with AtRanBPM. Homologues of identified proteins are known to be components of the C-terminal to the LisH motif (CTLH) complexes in humans and budding yeast. Microscopic analysis of GFP-AtRanBPM in vivo and immunofluorescence localization of endogenous AtRanBPM protein in cultured cells and seedlings of Arabidopsis showed mainly cytoplasmic and nuclear localization. Absence of colocalization with γ-tubulin was consistent with the biochemical data and suggests another than a centrosomal role of the AtRanBPM protein. CONCLUSION: We showed that as yet uncharacterized Arabidopsis RanBPM protein physically interacts with LisH-CTLH domain-containing proteins. The newly identified high molecular weight cytoplasmic protein complexes of AtRanBPM showed homology with CTLH types of complexes described in mammals and budding yeast. Although the exact functions of the CTLH complexes in scaffolding of protein degradation, in protein interactions and in signalling from the periphery to the cell centre are not yet fully understood, structural conservation of the complexes across eukaryotes suggests their important biological role.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytoskeletal Proteins/metabolism , Eukaryota/genetics , Evolution, Molecular , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Conserved Sequence , Cytoskeletal Proteins/genetics , Eukaryota/chemistry , Eukaryota/classification , Humans , Molecular Sequence Data , Nuclear Proteins/genetics , Plants/chemistry , Plants/classification , Plants/genetics , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
5.
Inorg Chem ; 51(7): 4215-23, 2012 Apr 02.
Article in English | MEDLINE | ID: mdl-22409604

ABSTRACT

Magnesium(II), zinc(II), and metal-free phthalocyanines (Pcs) and azaphthalocyanines (AzaPcs) containing alkylsulfanyl, aryloxy, and dialkylamino peripheral substituents have been synthesized. The complexation of magnesium(II) by metal-free Pcs and AzaPcs has been studied in detail to determine the optimal reaction conditions necessary to ensure a complete conversion. Photophysical and photochemical measurements in tetrahydrofuran showed that magnesium(II) AzaPcs with aryloxy and alkylsulfanyl substituents have excellent fluorescent properties (Φ(F) up to 0.73) and that the corresponding zinc(II) Pcs are efficient singlet oxygen producers (Φ(Δ) up to 0.68). The presence of dialkylamino substituents causes intramolecular charge transfer within the molecule that competes with fluorescence and singlet oxygen formation. Alkylsulfanyl MgAzaPc and ZnAzaPc were the most photostable compounds among the series of studied derivatives. In addition, high molar absorption coefficients (ε ∼ 300,000 M(-1) cm(-1)), absorption (λ(max) ∼ 650 nm), and emission (λ(em) ∼ 660 nm, high Φ(F)) in the red region suggest that these molecules are potential fluorescent probes that are superior to the commercial red cyanine dye Cy5. MgAzaPc, when incorporated into lipidic bilayers of liposomes, maintains excellent fluorescence properties (Φ(F) = 0.64). Water-soluble MgAzaPc with quaternary ammonium peripheral substituents retained a high fluorescence quantum yield even in water (Φ(F) = 0.25). The described properties show that magnesium(II) AzaPcs are excellent red-emitting fluorophores with potential applications as fluorescent probes in sensing or in vitro imaging applications.


Subject(s)
Fluorescent Dyes/chemical synthesis , Indoles/chemical synthesis , Magnesium/chemistry , Fluorescence , Furans/chemistry , Isoindoles , Molecular Structure , Quantum Theory , Singlet Oxygen , Spectrometry, Fluorescence , Water/chemistry , Zinc/chemistry
6.
Phys Chem Chem Phys ; 12(11): 2555-63, 2010 Mar 20.
Article in English | MEDLINE | ID: mdl-20200731

ABSTRACT

A series of octasubstituted zinc(II) tetrapyrazinoporphyrazines (TPyzPz), aza-analogues of phthalocyanines, differing in the number of peripheral N,N-diethylamino (n = 0-8) and tert-butylsulfanyl substituents (m = 8-n) has been synthesized. All possible congeners were characterized including adjacent and opposite isomers. Steady-state (UV-vis, fluorescence) and time-resolved (fluorescence, femtosecond transient absorption) spectroscopies, redox and photochemical (singlet oxygen formation) properties were investigated and compared. The peripheral tertiary amino substituents (donor) induce a new competitive relaxation pathway to fluorescence and intersystem crossing due to the mixing of the first excited state S(1) of the TPyzPz macrocycle with a nearby intramolecular charge transfer (ICT) state. The fluorescence quantum yield and fluorescence lifetime of 6Zn bearing one N,N-diethylamino substituent (n = 1, m = 7) decreased with increasing solvent polarity, while the same observables of 5Zn with no donor centre (n = 0, m = 8) were not affected. Protonation of the N,N-diethylamino substituent in 6Zn led to a strong increase of the fluorescence intensity. The cyclic voltammetry data, the steady-state and time-resolved emission and transient absorption studies revealed strong electronic coupling between the TPyzPz moiety and N,N-diethylamino substituents. ICT is an extremely rapid process occurring with a time constant of 10 ps and 7 ps in 6Zn (n = 1, m = 7) and 11Zn (n = 8, m = 0) in pyridine, respectively. The ICT efficiency decreased in non-polar solvents. The presence of two N,N-diethylamino substituents in 7Zn (n = 2, m = 6) considerably quenched the S(1) states in pyridine (polar, coordinating), toluene (non-polar, non-coordinating) and toluene-1% pyridine (v/v) (non-polar, coordinating). The photophysical properties of compounds with more donor substituents on the periphery (n > 2, m < 6) were similar to those of 7Zn.


Subject(s)
Indoles/chemistry , Singlet Oxygen/chemistry , Fluorescence , Indoles/chemical synthesis , Isoindoles , Oxidation-Reduction , Photochemical Processes , Quantum Theory , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...