Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Cardiovasc Res ; 106(1): 153-62, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25616416

ABSTRACT

AIMS: Duchenne muscular dystrophy (DMD), a degenerative pathology of skeletal muscle, also induces cardiac failure and arrhythmias due to a mutation leading to the lack of the protein dystrophin. In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The absence of dystrophin results in an elevated stress-induced Ca2+ influx due to the inadequate functioning of several proteins, such as stretch-activated channels (SACs). Our aim was to investigate whether transient receptor potential vanilloid channels type 2 (TRPV2) form subunits of the dysregulated SACs in cardiac dystrophy. METHODS AND RESULTS: We defined the role of TRPV2 channels in the abnormal Ca2+ influx of cardiomyocytes isolated from dystrophic mdx mice, an established animal model for DMD. In dystrophic cells, western blotting showed that TRPV2 was two-fold overexpressed. While normally localized intracellularly, in myocytes from mdx mice TRPV2 channels were translocated to the sarcolemma and were prominent along the T-tubules, as indicated by immunocytochemistry. Membrane localization was confirmed by biotinylation assays. Furthermore, in mdx myocytes pharmacological modulators suggested an abnormal activity of TRPV2, which has a unique pharmacological profile among TRP channels. Confocal imaging showed that these compounds protected the cells from stress-induced abnormal Ca2+ signals. The involvement of TRPV2 in these signals was confirmed by specific pore-blocking antibodies and by small-interfering RNA ablation of TRPV2. CONCLUSION: Together, these results establish the involvement of TRPV2 in a stretch-activated calcium influx pathway in dystrophic cardiomyopathy, contributing to the defective cellular Ca2+ handling in this disease.


Subject(s)
Calcium Channels/physiology , Cardiomyopathies/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Myocytes, Cardiac/pathology , Stress, Mechanical , TRPV Cation Channels/physiology , Animals , Calcium/metabolism , Cardiomyopathies/pathology , Cells, Cultured , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/pathology , Osmosis/physiology , Sarcolemma/metabolism , Signal Transduction/physiology
3.
FASEB J ; 28(3): 1198-209, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24327605

ABSTRACT

In humans, sterol 27-hydroxylase (CYP27A1) deficiency leads to cholesterol deposition in tendons and vasculature. Thus, in addition to its role in bile acid synthesis, where it converts cholesterol to 27-hydroxycholesterol (27-OHC), CYP27A1 may also be atheroprotective. Cyp27A1-deficient (Cyp27A1(-/-)) mice were crossed with apolipoprotein E (apoE)-deficient mice. Cyp27A1(+/+)/apoE(-/-) [ApoE-knockout (KO)], Cyp27A1(+/-)/apoE(-/-) heterozygous (het), and Cyp27A1(-/-)/apoE(-/-) [double-knockout (DKO)] mice were challenged with a Western diet (WD) for 3 and 6 mo. ApoE-KO mice fed a chow diet or a WD were used as the control. The severity of atherosclerosis in DKO mice was reduced 10-fold. Compared with the control, the DKO mice had no 27-OHC, total plasma cholesterol and low-density lipoprotein and very low density lipoprotein (LDL/VLDL) concentrations were reduced 2-fold, and HDL was elevated 2-fold. Expression of hepatic CYP7A1, CYP3A, and CYP8B1 were 5- to 10-fold higher. 3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) activity increased 4-fold. Fecal cholesterol was increased. In contrast, het mice fed a WD developed accelerated atherosclerosis and severe skin lesions, possibly because of reduced reverse cholesterol transport due to diminished 27-OHC production. CYP27A1 activity is involved in the control of cholesterol homeostasis and development of atherosclerosis with a distinct gene dose-dependent effect.


Subject(s)
Apolipoproteins E/genetics , Atherosclerosis/genetics , Cholestanetriol 26-Monooxygenase/genetics , Gene Dosage , Animals , Body Fluids/metabolism , Genotype , Mice , Mice, Knockout
4.
J Endocrinol ; 219(2): 119-29, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24096962

ABSTRACT

The intracellular availability of glucocorticoids is regulated by the enzymes 11ß-hydroxysteroid dehydrogenase 1 (HSD11B1) and 11ß-hydroxysteroid dehydrogenase 2 (HSD11B2). The activity of HSD11B1 is measured in the urine based on the (tetrahydrocortisol+5α-tetrahydrocortisol)/tetrahydrocortisone ((THF+5α-THF)/THE) ratio in humans and the (tetrahydrocorticosterone+5α-tetrahydrocorticosterone)/tetrahydrodehydrocorticosterone ((THB+5α-THB)/THA) ratio in mice. The cortisol/cortisone (F/E) ratio in humans and the corticosterone/11-dehydrocorticosterone (B/A) ratio in mice are markers of the activity of HSD11B2. In vitro agonist treatment of liver X receptor (LXR) down-regulates the activity of HSD11B1. Sterol 27-hydroxylase (CYP27A1) catalyses the first step in the alternative pathway of bile acid synthesis by hydroxylating cholesterol to 27-hydroxycholesterol (27-OHC). Since 27-OHC is a natural ligand for LXR, we hypothesised that CYP27A1 deficiency may up-regulate the activity of HSD11B1. In a patient with cerebrotendinous xanthomatosis carrying a loss-of-function mutation in CYP27A1, the plasma concentrations of 27-OHC were dramatically reduced (3.8 vs 90-140 ng/ml in healthy controls) and the urinary ratios of (THF+5α-THF)/THE and F/E were increased, demonstrating enhanced HSD11B1 and diminished HSD11B2 activities. Similarly, in Cyp27a1 knockout (KO) mice, the plasma concentrations of 27-OHC were undetectable (<1 vs 25-120 ng/ml in Cyp27a1 WT mice). The urinary ratio of (THB+5α-THB)/THA was fourfold and that of B/A was twofold higher in KO mice than in their WT littermates. The (THB+5α-THB)/THA ratio was also significantly increased in the plasma, liver and kidney of KO mice. In the liver of these mice, the increase in the concentrations of active glucocorticoids was due to increased liver weight as a consequence of Cyp27a1 deficiency. In vitro, 27-OHC acts as an inhibitor of the activity of HSD11B1. Our studies suggest that the expression of CYP27A1 modulates the concentrations of active glucocorticoids in both humans and mice and in vitro.


Subject(s)
Cholestanetriol 26-Monooxygenase/physiology , Glucocorticoids/metabolism , Homeostasis/physiology , Xanthomatosis, Cerebrotendinous/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Animals , Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism , Disease Models, Animal , Female , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Xanthomatosis, Cerebrotendinous/genetics , Xanthomatosis, Cerebrotendinous/physiopathology
5.
Am J Physiol Endocrinol Metab ; 297(4): E949-55, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19671838

ABSTRACT

In the kidney, progesterone is inactivated to 20alpha-dihydro-progesterone (20alpha-DH-progesterone) to protect the mineralocorticoid receptor from progesterone excess. In an attempt to clone the enzyme with 20alpha-hydroxysteroid activity using expression cloning in CHOP cells and a human kidney expression library, serendipitously cDNA encoding CYP27A1 was isolated. Overexpression of CYP27A1 in CHOP cells decreased progesterone conversion to 20alpha-DH-progesterone in a dose-dependent manner, an effect enhanced by cotransfection with adrenodoxin and adrenodoxin reductase. Incubation of CHOP cells with 27-hydroxycholesterol, a product of CYP27A1, increased the ratio of progesterone to 20alpha-DH-progesterone in a concentration-dependent manner, indicating that the effect of CYP27A1 overexpression was mediated by 27-hydroxycholesterol. To analyze whether these observations are relevant in vivo, progesterone and 20alpha-DH-progesterone were measured by gas chromatography-mass spectometry in 24-h urine of CYP27A1 gene knockout (ko) mice and their control wild-type and heterozygote littermates. In CYP27A1 ko mice, urinary progesterone concentrations were decreased, 20alpha-DH-progesterone increased, and the progesterone-to-20alpha-DH-progesterone ratio decreased threefold (P < 0.001). Thus CYP27A1 modulates progesterone concentrations. The underlying mechanism is inhibition of 20alpha-hydroxysteroid dehydrogenase by 27-hydroxycholesterol.


Subject(s)
Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism , Progesterone/metabolism , Adrenodoxin/biosynthesis , Animals , Biotransformation , Blotting, Western , Cell Line , Cloning, Molecular , Electron Transport , Female , Ferredoxin-NADP Reductase/biosynthesis , Gas Chromatography-Mass Spectrometry , Gene Library , Humans , Hydroxycholesterols/metabolism , Kidney/metabolism , Male , Mice , Mice, Knockout , Progesterone/blood , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...