ABSTRACT
Statins are the first-line treatment for familial hypercholesterolemia (FH), but response is highly variable due to genetic and nongenetic factors. Here, we explored the association between response and genetic variability in 114 Brazilian adult FH patients. Specifically, a panel of 84 genes was analyzed by exon-targeted gene sequencing (ETGS), and the functional impact of variants in pharmacokinetic (PK) genes was assessed using an array of functionality prediction methods. Low-density lipoprotein cholesterol (LDL-c) response to statins (reduction ≥ 50%) and statin-related adverse event (SRAE) risk were assessed in carriers of deleterious variants in PK-related genes using multivariate linear regression analyses. Fifty-eight (50.8%) FH patients responded to statins, and 24 (21.0%) had SRAE. Results of the multivariate regression analysis revealed that ABCC1 rs45511401 significantly increased LDL-c reduction after statin treatment (p < 0.05). In silico analysis of the amino-acid change using molecular docking showed that ABCC1 rs45511401 possibly impairs statin efflux. Deleterious variants in PK genes were not associated with an increased risk of SRAE. In conclusion, the deleterious variant ABCC1 rs45511401 enhanced LDL-c response in Brazilian FH patients. As such, this variant might be a promising candidate for the individualization of statin therapy.
ABSTRACT
Statins are the first-line treatment for familial hypercholesterolemia (FH), but response is highly variable due to genetic and nongenetic factors. Here, we explored the association between response and genetic variability in 114 Brazilian adult FH patients. Specifically, a panel of 84 genes was analyzed by exon-targeted gene sequencing (ETGS), and the functional impact of variants in pharmacokinetic (PK) genes was assessed using an array of functionality prediction methods. Low-density lipoprotein cholesterol (LDL-c) response to statins (reduction ≥ 50%) and statin-related adverse event (SRAE) risk were assessed in carriers of deleterious variants in PK-related genes using multivariate linear regression analyses. Fifty-eight (50.8%) FH patients responded to statins, and 24 (21.0%) had SRAE. Results of the multivariate regression analysis revealed that ABCC1 rs45511401 significantly increased LDL-c reduction after statin treatment (p < 0.05). In silico analysis of the amino-acid change using molecular docking showed that ABCC1 rs45511401 possibly impairs statin efflux. Deleterious variants in PK genes were not associated with an increased risk of SRAE. In conclusion, the deleterious variant ABCC1 rs45511401 enhanced LDL-c response in Brazilian FH patients. As such, this variant might be a promising candidate for the individualization of statin therapy.
Subject(s)
Pharmacogenetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Drug-Related Side Effects and Adverse Reactions , Myalgia , Hyperlipoproteinemia Type IIABSTRACT
BACKGROUND: The available antihypertensive drugs are effective and well tolerated agents. However, only about half of patients with treated hypertension achieve appropriate blood pressure control. Genetic and non-genetic factors contribute to the interindividual variability of the therapeutic response. OBJECTIVE: This review constitutes a comprehensive update of the pharmacogenomics of antihypertensive drugs and their clinical implications in Brazil. RESULTS: Twenty-five studies explored the influence of gene variants on drug response in patients with primary, resistant, or gestational hypertension. Variants in BDKRB2, NOS3, PRKCA, and VEGFA influenced the response to enalapril in patients with primary hypertension. AGT and MMP2 variants were associated with a high risk of resistance to antihypertensive treatment, whereas NOS2 variants were related to low risk. Moreover, NAT2 slow acetylators showed an increased response to hydralazine in patients with resistant hypertension. HMOX1, NAMPT, MMP9, NOS3, and TIMP1 variants might be markers of drug responsiveness in hypertensive or preeclamptic pregnant women. Power and replication of studies, polygenic nature of the response to therapy, and treatment with multiple drugs were important challenges to identify genetic predictors of antihypertensive response in Brazil. CONCLUSION: Pharmacogenomic studies in Brazilian cohorts provide some evidence of variants, mainly in pharmacodynamics genes, which influence the response to antihypertensive drugs. However, some findings are limited by cohort size or therapeutic scheme and may be influenced by interactions with other genetic and non-genetic factors. Therefore, further investigations are needed to elucidate the contribution of pharmacogenomics to the efficacy and safety of antihypertensive therapy.
Subject(s)
Antihypertensive Agents , Hypertension , Pharmacogenetics , Female , Humans , Pregnancy , Antihypertensive Agents/therapeutic use , Blood Pressure , Brazil/epidemiology , Hypertension/drug therapy , Hypertension/geneticsABSTRACT
Tobacco smoke and air pollutants contain carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and tobacco specific nitrosamines (TSNA), that are substrates of metabolizing enzymes generating reactive metabolites that can bind to DNA. Variation in the activity of these enzymes may modify the extent to which these metabolites can interact with DNA. We compared the levels of bulky DNA adducts in blood leukocytes from 93 volunteers living in Mexico City with the presence of 13 single nucleotide polymorphisms (SNPs) in genes related to PAH and TSNA metabolism (AhR rs2044853, CYP1A1 rs1048943, CYP1A1 rs1048943, CYP1A1 rs1799814, EPHX1 rs1051740, EPHX1 rs2234922, GSTM1 null, GSTT1 null and GSTP1 rs947894), DNA repair (XRCC1 rs25487, ERCC2 rs13181 and MGMT rs12917) and cell cycle (TP53 rs1042522). (32)P-postlabeling analysis was used to quantify bulky DNA adduct formation. Genotyping was performed using PCR-RFLP. The mean levels of bulky DNA adducts were 8.51±3.66 adducts/10(8) nucleotides (nt) in smokers and 8.38±3.59 adducts/10(8) nt in non-smokers, being the difference not statistically significant. Without taking into account the smoking status, GSTM1 null individuals had a marginally significant lower adduct levels compared with GSTM1 volunteers (p=0.0433) and individuals heterozygous for MGMT Leu/Phe had a higher level of bulky adducts than those who were homozygous wild type (p=0.0170). A multiple regression analysis model showed a significant association between the GSTM1 (deletion) and MGMT rs12917 (Phe/Phe) haplotype and the formation of DNA adducts in smokers (R(2)=0.2401, p=0.0215). The presence of these variants conferred a greater risk for higher adduct levels in this Mexican population.