Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Mol Phylogenet Evol ; 197: 108095, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729384

ABSTRACT

Despite decades of molecular research, phylogenetic relationships in Palearctic vipers (genus Vipera) still essentially rely on a few loci, such as mitochondrial barcoding genes. Here we examined the diversity and evolution of Vipera with ddRAD-seq data from 33 representative species and subspecies. Phylogenomic analyses of âˆ¼ 1.1 Mb recovered nine major clades corresponding to known species/species complexes which are generally consistent with the mitochondrial phylogeny, albeit with a few deep discrepancies that highlight past hybridization events. The most spectacular case is the Italian-endemic V. walser, which is grouped with the alpine genetic diversity of V. berus in the nuclear tree despite carrying a divergent mitogenome related to the Caucasian V. kaznakovi complex. Clustering analyses of SNPs suggest potential admixture between diverged Iberian taxa (V. aspis zinnikeri and V. seoanei), and confirm that the Anatolian V. pontica corresponds to occasional hybrids between V. (ammodytes) meridionalis and V. kaznakovi. Finally, all analyzed lineages of the V. berus complex (including V. walser and V. barani) form vast areas of admixture and may be delimited as subspecies. Our study sets grounds for future taxonomic and phylogeographic surveys on Palearctic vipers, a group of prime interest for toxinological, ecological, biogeographic and conservation research.

2.
Ecol Evol ; 13(9): e10478, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37664508

ABSTRACT

Species with wide-range distributions usually display high genetic variation. This variation can be partly explained by historical lineages that were temporally isolated from each other and are back into secondary reproductive contact, and partly by local adaptations. The smooth newt (Lissotriton vulgaris) is one of the most widely distributed amphibians species across Eurasia and forms a species complex with a partially overlapping distribution and morphology. In the present study, we explored the population genomic structure of smooth newt lineages in the Carpathian Basin (CB) relying on single-nucleotide polymorphisms. Our dataset included new and previously published data to study the secondary contact zone between lineages in the CB and also tested for the barrier effect of rivers to gene flow between these lineages. We confirmed the presence of the South L. v. vulgaris Lineage distributed in Transdanubia and we provided new distribution records of L. v. ampelensis inhabiting the eastern territories of the CB. High genetic diversity of smooth newts was observed, especially in the North Hungarian Mountains and at the interfluves of the main rivers in the South with four distinct lineages of L. v. vulgaris and one lineage of L. v. ampelensis showing a low level of admixture with the spatially closest L. v. vulgaris lineage. Moreover, admixture detected at the interfluve of the main rivers (i.e. Danube and Tisza) suggested a secondary contact zone in the area. Finally, we found that the river Danube has a very weak effect on population divergence, while the river Tisza is a geographical barrier limiting gene flow between smooth newt lineages. As the range boundaries of L. v. vulgaris and L. v. ampelensis in the CB coincide with the river Tisza, our study underpins the influence of rivers in lineage diversification.

3.
Zootaxa ; 5228(1): 1-43, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-37044667

ABSTRACT

In south-eastern Australia, the pelodryadid Litoria aurea Group (sensu Tyler & Davies 1978) comprises three species: Litoria aurea (Lesson, 1829), Litoria raniformis (Keferstein, 1867), and Litoria castanea (Steindachner, 1867). All three species have been subject to declines over recent decades and taxonomic uncertainty persists among populations on the tablelands in New South Wales. We address the systematics of the Group by analysing mitochondrial and nuclear DNA sequences to assess divergence in the Litoria raniformis from across its current range in New South Wales (NSW), Victoria, South Australia (SA) and Tasmania. We also included samples of Litoria castanea from a recently rediscovered population in the southern tablelands of NSW. Our phylogenetic and population genetic analyses show that Litoria raniformis comprises northern and southern lineages, showing deep mitochondrial DNA sequence divergence (7% net average sequence divergence) and can be diagnosed by fixed allelic differences at more than 4,000 SNP loci. Samples of the northern lineage were collected from the Murray-Darling Basin while those of the southern lineage were collected from south-eastern South Australia, southern and south-eastern Victoria and Tasmania. Analysis of the morphology and bioacoustics did not unequivocally delineate the two lineages. The presence of a hybrid backcross individual in western Victoria at the northern margin of the southern lineage, leads us to assign sub-species status to the two lineages, L. r. raniformis for the northern lineage and L. r. major for the southern lineage. Our data do not unequivocally resolve the taxonomic status of L. castanea which will require molecular genetic analyses of museum vouchers from those parts of the range where L. castanea and L. raniformis are no longer extant. Our data also suggest that human mediated movement of frogs may have occurred over the past 50 years. Our genotyping of vouchers collected in the 1970s from the Mount Lofty Ranges in South Australia detected mitochondrial haplotypes of both sub-species and SNP analysis showed that a single Tasmanian specimen was a backcross with L. r. raniformis ancestry. Movement of L. r. raniformis into Tasmania and both sub-species into the Mount Lofty Ranges are not likely due to passive movements of animals through agricultural commerce, but due to the attractiveness of the species as pets and subsequent escapes or releases, potentially of the larval life stage.


Subject(s)
Anura , Humans , Animals , Anura/genetics , Phylogeny , Haplotypes , Larva
4.
iScience ; 25(12): 105541, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36590463

ABSTRACT

The number of epizootics in amphibian populations caused by viruses of the genus Ranavirus is increasing worldwide. Yet, causes for pathogen emergence are poorly understood. Here, we confirmed that the Common midwife toad virus (CMTV) and Frog virus 3 (FV3) are responsible for mass mortalities in Iberia since the late 1980s. Our results illustrate the Iberian Peninsula as a diversity hotspot for the highly virulent CMTV. Although this pattern of diversity in Europe is consistent with spread by natural dispersal, the exact origin of the emergence of CMTV remains uncertain. Nevertheless, our data allow hypothesizing that the Iberian Peninsula might harbor the ancestral population of CMTVs that could have spread into the rest of Europe. In addition, we found that climate warming could be triggering the CMTV outbreaks, supporting its endemic status in the Iberian Peninsula.

5.
PLoS One ; 16(10): e0258454, 2021.
Article in English | MEDLINE | ID: mdl-34705824

ABSTRACT

We describe a new species of rain frog of the genus Pristimantis from the city of Loja, Southern Ecuador, based on an integrative taxonomy approach, combining molecular, morphological and bioacoustics data. Pristimantis lojanus sp. nov. is a medium sized species of the phylogenetically strongly supported P. phoxocephalus group, and its sister species is P. torresi. The new species can be easily distinguished from its closest congeners and morphologically similar species (that also have acuminate snout with a fleshy keel) by its characteristic advertisement call and morphological features (dorsum finely tuberculate with scattered larger tubercles, flanks without longitudinal lateral folds, no markings in axilla, groin or on concealed limb surfaces, and bronze iris). Additionally, we describe the advertisement call of its sister species, P. torresi. Finally, we detail the current situation of the amphibian species present in the city of Loja and its surroundings.


Subject(s)
Anura , Animal Distribution , Animals , Ecuador , Phylogeny
6.
Mol Biol Evol ; 38(11): 5092-5106, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34375431

ABSTRACT

Proteins encoded by antigen-processing genes (APGs) provide major histocompatibility complex (MHC) class I (MHC-I) with antigenic peptides. In mammals, polymorphic multigenic MHC-I family is served by monomorphic APGs, whereas in certain nonmammalian species both MHC-I and APGs are polymorphic and coevolve within stable haplotypes. Coevolution was suggested as an ancestral gnathostome feature, presumably enabling only a single highly expressed classical MHC-I gene. In this view coevolution, while optimizing some aspects of adaptive immunity, would also limit its flexibility by preventing the expansion of classical MHC-I into a multigene family. However, some nonmammalian taxa, such as salamanders, have multiple highly expressed MHC-I genes, suggesting either that coevolution is relaxed or that it does not prevent the establishment of multigene MHC-I. To distinguish between these two alternatives, we use salamanders (30 species from 16 genera representing six families) to test, within a comparative framework, a major prediction of the coevolution hypothesis: the positive correlation between MHC-I and APG diversity. We found that MHC-I diversity explained both within-individual and species-wide diversity of two APGs, TAP1 and TAP2, supporting their coevolution with MHC-I, whereas no consistent effect was detected for the other three APGs (PSMB8, PSMB9, and TAPBP). Our results imply that although coevolution occurs in salamanders, it does not preclude the expansion of the MHC-I gene family. Contrary to the previous suggestions, nonmammalian vertebrates thus may be able to accommodate diverse selection pressures with flexibility granted by rapid expansion or contraction of the MHC-I family, while retaining the benefits of coevolution between MHC-I and TAPs.


Subject(s)
Antigen Presentation , Urodela , Animals , Antigen Presentation/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Mammals/genetics , Multigene Family , Urodela/genetics , Urodela/metabolism , Vertebrates/genetics
7.
BMC Ecol Evol ; 21(1): 135, 2021 07 03.
Article in English | MEDLINE | ID: mdl-34217227

ABSTRACT

BACKGROUND: Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, one of the major causes of worldwide amphibian biodiversity loss. Many amphibians exhibit skin-based chemical defences, which may play an important role against invading pathogens, but whether the synthesis of these chemical compounds is enhanced or suppressed in the presence of pathogens is largely unknown. Here we investigated direct and indirect effects of larval exposure to the globally distributed and highly virulent Bd-GPL strain on skin secreted chemical defences and life history traits during early ontogeny of agile frogs (Rana dalmatina) and common toads (Bufo bufo). RESULTS: Exposure to Bd during the larval stage did not result in enhanced synthesis of the antimicrobial peptide Brevinin-1 Da in R. dalmatina tadpoles or in increased production of bufadienolides in B. bufo tadpoles. However, exposure to Bd during the larval stage had a carry-over effect reaching beyond metamorphosis: both R. dalmatina and B. bufo froglets contained smaller quantities of defensive chemicals than their Bd-naïve conspecifics in the control treatment. Prevalence of Bd and infection intensities were very low in both larvae and metamorphs of R. dalmatina, while in B. bufo we observed high Bd prevalence and infection intensities, especially in metamorphs. At the same time, we did not find a significant effect of Bd-exposure on body mass or development rate in larvae or metamorphs in either species. CONCLUSIONS: The lack of detrimental effect of Bd-exposure on life history traits, even parallel with high infection intensities in the case of B. bufo individuals, is surprising and suggests high tolerance of local populations of these two species against Bd. However, the lowered quantity of defensive chemicals may compromise antimicrobial and antipredatory defences of froglets, which may ultimately contribute to population declines also in the absence of conspicuous mass-mortality events.


Subject(s)
Bufo bufo , Chytridiomycota , Animals , Anura , Batrachochytrium , Humans , Ranidae
8.
Nat Commun ; 12(1): 150, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420011

ABSTRACT

Novel bacterial type II topoisomerase inhibitors (NBTIs) stabilize single-strand DNA cleavage breaks by DNA gyrase but their exact mechanism of action has remained hypothetical until now. We have designed a small library of NBTIs with an improved DNA gyrase-binding moiety resulting in low nanomolar inhibition and very potent antibacterial activity. They stabilize single-stranded cleavage complexes and, importantly, we have obtained the crystal structure where an NBTI binds gyrase-DNA in a single conformation lacking apparent static disorder. This directly proves the previously postulated NBTI mechanism of action and shows that they stabilize single-strand cleavage through asymmetric intercalation with a shift of the scissile phosphate. This crystal stucture shows that the chlorine forms a halogen bond with the backbone carbonyls of the two symmetry-related Ala68 residues. To the best of our knowledge, such a so-called symmetrical bifurcated halogen bond has not been identified in a biological system until now.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chlorine/metabolism , DNA Gyrase/metabolism , Topoisomerase II Inhibitors/pharmacology , Alanine/chemistry , Alanine/metabolism , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , DNA Gyrase/chemistry , DNA Topoisomerases, Type II , DNA, Single-Stranded/metabolism , Drug Design , ERG1 Potassium Channel/metabolism , Escherichia coli/drug effects , Escherichia coli/enzymology , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Molecular Docking Simulation , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Quinolines/chemistry , Quinolines/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Topoisomerase II Inhibitors/chemistry
9.
Sci Total Environ ; 753: 141896, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-32889314

ABSTRACT

Coping with anthropogenic environmental change is among the greatest challenges faced by wildlife, and endocrine flexibility is a potentially crucial coping mechanism. Animals may adapt to anthropogenic environments by dampening their glucocorticoid stress response, but empirical tests of this hypothesis have provided mixed evidence. An alternative hypothesis is that a non-attenuated stress response and efficient negative feedback are favored in anthropogenic habitats. To test this idea, we non-invasively sampled corticosterone release rates of common toad (Bufo bufo) tadpoles in agricultural, urban, and natural habitats, and quantified their stress response and negative feedback by a standardized stress-and-recovery protocol. We repeated the same sampling with tadpoles raised from eggs from the same ponds in a common-garden experiment to infer if the differences observed between populations in different habitats were due to individual phenotypic plasticity rather than microevolution or transgenerational effects. We found that, compared to tadpoles in natural ponds, urban tadpoles had higher baseline and stressed corticosterone release rates, and tadpoles in agricultural ponds had similar corticosterone release rates but greater stress-induced change, indicating stronger stress responses in both types of anthropogenic habitats. As predicted, tadpoles in both agricultural and urban ponds showed more efficient negative feedback than did tadpoles in natural ponds. Water pollution levels, as indicated by the concentrations of carbamazepine and corticoid-disrupting compounds in pond water, contributed to elevating the stress response regardless of land use. Infection by neither Batrachochytrium dendrobatidis nor Ranavirus was detected in free-living tadpoles. No habitat-related glucocorticoid differences persisted in the common-garden experiment. These results suggest that toad tadpoles in anthropogenic habitats increased their glucocorticoid flexibility via phenotypic plasticity. The coupling of stronger stress response and stronger negative feedback in these habitats supports the importance of rapidly "turning on and off" the stress response as a mechanism for coping with anthropogenic environmental change.


Subject(s)
Chytridiomycota , Glucocorticoids , Adaptation, Physiological , Animals , Ecosystem , Larva
10.
Genes (Basel) ; 11(10)2020 10 17.
Article in English | MEDLINE | ID: mdl-33080926

ABSTRACT

Across the distribution of the Caspian whipsnake (Dolichophis caspius), populations have become increasingly disconnected due to habitat alteration. To understand population dynamics and this widespread but locally endangered snake's adaptive potential, we investigated population structure, admixture, and effective migration patterns. We took a landscape-genomic approach to identify selected genotypes associated with environmental variables relevant to D. caspius. With double-digest restriction-site associated DNA (ddRAD) sequencing of 53 samples resulting in 17,518 single nucleotide polymorphisms (SNPs), we identified 8 clusters within D. caspius reflecting complex evolutionary patterns of the species. Estimated Effective Migration Surfaces (EEMS) revealed higher-than-average gene flow in most of the Balkan Peninsula and lower-than-average gene flow along the middle section of the Danube River. Landscape genomic analysis identified 751 selected genotypes correlated with 7 climatic variables. Isothermality correlated with the highest number of selected genotypes (478) located in 41 genes, followed by annual range (127) and annual mean temperature (87). We conclude that environmental variables, especially the day-to-night temperature oscillation in comparison to the summer-to-winter oscillation, may have an important role in the distribution and adaptation of D. caspius.


Subject(s)
Genetic Variation , Genetics, Population , Genome , Genomics/methods , Reptilian Proteins/genetics , Snakes/genetics , Adaptation, Physiological , Animals , Asia, Western , Biological Evolution , Europe, Eastern , Gene Flow , Genotype
11.
J Hered ; 110(2): 211-218, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30576453

ABSTRACT

We provide a comparative population genetic study of the elusive amphibian, Proteus anguinus, by comparing the genetic diversity and divergence among 4 cave populations (96 individuals) sampled in the Dinaric Karst of Croatia. We developed 10 variable microsatellite markers using pyrosequencing and applied them to the 4 selected populations belonging to 4 different cave systems. The results showed strong genetic differentiation between the 4 caves corroborating with previous findings suggesting that Proteus might comprise several unrecognized taxa. Our results confirmed that gene flow should be high within the caves, whereas it is low between hydrographic systems since geological periods. Finally, we conclude that the high genetic subdivision suggests the necessity of treating the 4 studied Proteus populations as evolutionary significant units.


Subject(s)
Genetic Variation , Genetics, Population , Microsatellite Repeats , Proteus/classification , Proteus/genetics , Biological Evolution , Croatia , Geography , Population Density , Repetitive Sequences, Nucleic Acid
12.
Science ; 360(6389): 621-627, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29748278

ABSTRACT

Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide.


Subject(s)
Amphibians/microbiology , Extinction, Biological , Africa , Americas , Animals , Asia , Australia , Chytridiomycota/classification , Chytridiomycota/genetics , Chytridiomycota/isolation & purification , Chytridiomycota/pathogenicity , Europe , Genes, Fungal , Genetic Variation , Hybridization, Genetic , Korea , Phylogeny , Sequence Analysis, DNA , Virulence
13.
Sci Rep ; 8(1): 7772, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29773857

ABSTRACT

Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.


Subject(s)
Amphibians/microbiology , Chytridiomycota/isolation & purification , Endangered Species , Animals , Information Dissemination , Larva/microbiology , Software
14.
Nucleic Acids Res ; 46(8): 4114-4128, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29538767

ABSTRACT

Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA ('poisoning') in an analogous fashion to fluoroquinolones, but without the requirement for the water-metal-ion bridge. Biochemical experiments and structural studies of cleavage complexes of IPYs compared with an uncleaved gyrase-DNA complex, reveal conformational transitions coupled to DNA cleavage at the DNA gate. These involve movement at the GyrA interface and tilting of the TOPRIM domains toward the scissile phosphate coupled to capture of the catalytic metal ion. Our experiments show that these structural transitions are involved generally in poisoning of gyrase by therapeutic compounds and resemble those undergone by the enzyme during its adenosine triphosphate-coupled strand-passage cycle. In addition to resistance mutations affecting residues that directly interact with the compounds, we characterized a mutant (D82N) that inhibits formation of the cleavage complex by the unpoisoned enzyme. The D82N mutant appears to act by stabilizing the binary conformation of DNA gyrase with uncleaved DNA without direct interaction with the compounds. This provides general insight into the resistance mechanisms to antibiotics targeting bacterial type II topoisomerases.


Subject(s)
Anti-Bacterial Agents/chemistry , DNA Gyrase/chemistry , Pyrazines/chemistry , Topoisomerase II Inhibitors/chemistry , Adenosine Triphosphate/metabolism , Anti-Bacterial Agents/classification , Ciprofloxacin/chemistry , DNA/chemistry , DNA Cleavage , DNA Gyrase/metabolism , Drug Resistance, Bacterial , Fluoroquinolones/chemistry , Magnesium/chemistry , Models, Molecular , Mutation
16.
Zootaxa ; 4337(4): 584-594, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29245759

ABSTRACT

We describe Phyllodytes amadoi sp. nov., a species of treefrog from the Atlantic Rainforest of southern Bahia, Brazil. The new species can be diagnosed by its small body size (SVL 15.6-23.0 mm) and advertisement call with high dominant frequency (3.789-4.306 Hz). It is known from one locality in the Private Reserve of Natural Heritage Ararauna, in the municipality of Una (15° 18' 38.3" S, 39° 9' 55.9" W, 96 m a.s.l.).


Subject(s)
Anura , Rainforest , Animals , Body Size , Brazil , Vocalization, Animal
17.
PLoS One ; 12(1): e0170945, 2017.
Article in English | MEDLINE | ID: mdl-28129383

ABSTRACT

In surveillance of subterranean fauna, especially in the case of rare or elusive aquatic species, traditional techniques used for epigean species are often not feasible. We developed a non-invasive survey method based on environmental DNA (eDNA) to detect the presence of the red-listed cave-dwelling amphibian, Proteus anguinus, in the caves of the Dinaric Karst. We tested the method in fifteen caves in Croatia, from which the species was previously recorded or expected to occur. We successfully confirmed the presence of P. anguinus from ten caves and detected the species for the first time in five others. Using a hierarchical occupancy model we compared the availability and detection probability of eDNA of two water sampling methods, filtration and precipitation. The statistical analysis showed that both availability and detection probability depended on the method and estimates for both probabilities were higher using filter samples than for precipitation samples. Combining reliable field and laboratory methods with robust statistical modeling will give the best estimates of species occurrence.


Subject(s)
DNA/genetics , Proteus/genetics , Amphibians/genetics , Animals , Caves , Croatia , DNA/chemistry , DNA/isolation & purification , Europe , Metagenomics , Proteus/chemistry , Species Specificity , Water/chemistry
18.
J Mol Biol ; 428(2 Pt B): 492-508, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26730886

ABSTRACT

mRNA export from the nucleus depends on the ATPase activity of the DEAD-box protein Dbp5/DDX19. Although Dbp5 has measurable ATPase activity alone, several regulatory factors (e.g., RNA, nucleoporin proteins, and the endogenous small molecule InsP6) modulate catalytic activity in vitro and in vivo to facilitate mRNA export. An analysis of the intrinsic and regulator-activated Dbp5 ATPase cycle is necessary to define how these factors control Dbp5 and mRNA export. Here, we report a kinetic and equilibrium analysis of the Saccharomyces cerevisiae Dbp5 ATPase cycle, including the influence of RNA on Dbp5 activity. These data show that ATP binds Dbp5 weakly in rapid equilibrium with a binding affinity (KT~4 mM) comparable to the KM for steady-state cycling, while ADP binds an order of magnitude more tightly (KD~0.4 mM). The overall intrinsic steady-state cycling rate constant (kcat) is limited by slow, near-irreversible ATP hydrolysis and even slower subsequent phosphate release. RNA increases kcat and rate-limiting Pi release 20-fold, although Pi release continues to limit steady-state cycling in the presence of RNA, in conjunction with RNA binding. Together, this work identifies RNA binding and Pi release as important biochemical transitions within the Dbp5 ATPase cycle and provides a framework for investigating the means by which Dbp5 and mRNA export is modulated by regulatory factors.


Subject(s)
Adenosine Triphosphatases/metabolism , DEAD-box RNA Helicases/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Phosphates/metabolism , RNA/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Kinetics
19.
Conserv Biol ; 28(1): 213-23, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24033675

ABSTRACT

Amphibians are globally threatened, but not all species are affected equally by different threatening processes. This is true for the threat posed by the chytridiomycete fungus (Batrachochytrium dendrobatidis). We compiled a European data set for B. dendrobatidis to analyze the trends of infection in European amphibians. The risk of infection was not randomly distributed geographically or taxonomically across Europe. Within countries with different prevalence, infection was nonrandom in certain amphibian taxa. Brown frogs of the genus Rana were unlikely to be infected, whereas frogs in the families Alytidae and Bombinatoridae were significantly more likely to be infected than predicted by chance. Frogs in the 2 families susceptible to B. dendrobatidis should form the core of attempts to develop spatial surveillance studies of chytridiomycosis in Europe. Ideally, surveys for B. dendrobatidis should be augmented by sampling the widespread genus Pelophylax because this taxon exhibits geographically inconsistent overinfection with B. dendrobatidis and surveillance of it may facilitate recognition of factors causing spatial variability of infection intensity. Several European amphibian taxa were not represented in our data set; however, surveillance of unsampled species should also occur when warranted.


Subject(s)
Amphibians/microbiology , Chytridiomycota/isolation & purification , Conservation of Natural Resources , Mycoses/epidemiology , Animals , Chytridiomycota/physiology , Europe , Mycoses/microbiology , Polymerase Chain Reaction/veterinary , Prevalence , Risk Assessment
20.
J Virol ; 88(5): 2584-99, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352439

ABSTRACT

UNLABELLED: Hepatitis B virus (HBV) is a major human pathogen that causes serious liver disease and 600,000 deaths annually. Approved therapies for treating chronic HBV infections usually target the multifunctional viral polymerase (hPOL). Unfortunately, these therapies--broad-spectrum antivirals--are not general cures, have side effects, and cause viral resistance. While hPOL remains an attractive therapeutic target, it is notoriously difficult to express and purify in a soluble form at yields appropriate for structural studies. Thus, no empirical structural data exist for hPOL, and this impedes medicinal chemistry and rational lead discovery efforts targeting HBV. Here, we present an efficient strategy to overexpress recombinant hPOL domains in Escherichia coli, purifying them at high yield and solving their known aggregation tendencies. This allowed us to perform the first structural and biophysical characterizations of hPOL domains. Apo-hPOL domains adopt mainly α-helical structures with small amounts of ß-sheet structures. Our recombinant material exhibited metal-dependent, reverse transcriptase activity in vitro, with metal binding modulating the hPOL structure. Calcomine orange 2RS, a small molecule that inhibits duck HBV POL activity, also inhibited the in vitro priming activity of recombinant hPOL. Our work paves the way for structural and biophysical characterizations of hPOL and should facilitate high-throughput lead discovery for HBV. IMPORTANCE: The viral polymerase from human hepatitis B virus (hPOL) is a well-validated therapeutic target. However, recombinant hPOL has a well-deserved reputation for being extremely difficult to express in a soluble, active form in yields appropriate to the structural studies that usually play an important role in drug discovery programs. This has hindered the development of much-needed new antivirals for HBV. However, we have solved this problem and report here procedures for expressing recombinant hPOL domains in Escherichia coli and also methods for purifying them in soluble forms that have activity in vitro. We also present the first structural and biophysical characterizations of hPOL. Our work paves the way for new insights into hPOL structure and function, which should assist the discovery of novel antivirals for HBV.


Subject(s)
Gene Products, pol/biosynthesis , Gene Products, pol/chemistry , Hepatitis B virus/enzymology , Algorithms , Circular Dichroism , Gene Products, pol/isolation & purification , Hepatitis B virus/genetics , Humans , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...