Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38496416

ABSTRACT

The ADAT2/ADAT3 complex catalyzes the adenosine to inosine modification at the wobble position of eukaryotic tRNAs. Mutations in ADAT3 , the catalytically inactive subunit of the ADAT2/ADAT3 complex, have been identified in patients presenting with severe neurodevelopmental disorders (NDDs). Yet, the physiological function of ADAT2/ADAT3 complex during brain development remains totally unknown. Here we showed that maintaining a proper level of ADAT2/ADAT3 catalytic activity is required for correct radial migration of projection neurons in the developing mouse cortex. In addition, we not only reported 7 new NDD patients carrying biallelic variants in ADAT3 but also deeply characterize the impact of those variants on ADAT2/ADAT3 structure, biochemical properties, enzymatic activity and tRNAs editing and abundance. We demonstrated that all the identified variants alter both the expression and the activity of the complex leading to a significant decrease of I 34 with direct consequence on their steady-state. Using in vivo complementation assays, we correlated the severity of the migration phenotype with the degree of the loss of function caused by the variants. Altogether, our results indicate a critical role of ADAT2/ADAT3 during cortical development and provide cellular and molecular insights into the pathogenicity of ADAT3-related neurodevelopmental disorder.

2.
Int J Parasitol ; 52(5): 317-329, 2022 04.
Article in English | MEDLINE | ID: mdl-35150663

ABSTRACT

Anti-parasitic treatment of neglected tropical diseases caused by cestodes such as echinococcosis and cysticercosis relies on a small number of approved anthelmintic drugs. Furthermore, the treatment is usually prolonged and often partially effective and not well tolerated by some patients. Therefore, the identification of novel drug targets and their associated compounds is critical. In this study, we identified and characterised sirtuin enzymes in cestodes and evaluated the cestocidal potential of sirtuin inhibitors as new cestocidal molecules. Sirtuins are a highly conserved family of nicotinamide-adenine dinucleotide-lysine deacylases involved in multiple cellular functions. Here, we described the full repertoire of sirtuin-encoding genes in several cestode species. We identified six sirtuin-encoding genes that were classified into sirtuins Class I (SIRT1, SIRT2, and SIRT3), Class III (SIRT5), and Class IV (SIRT6 and SIRT7). In Echinococcus spp., sirtuin genes showed transcriptional expression throughout several developmental stages, sirtuin 2 (SIRT2) being the most expressed. To evaluate the potential of sirtuin inhibitors as new cestocidal molecules, we determined the in vitro effect of several Class I sirtuin inhibitors by motility assay. Of those, the selective SIRT2 inhibitor Mz25 showed a strong cestocidal activity in Mesocestoides vogae (syn. Mesocestoides corti) tetrathyridia at various concentrations. The Mz25 cestocidal activity was time- and dose-dependent with a half-maximal inhibitory concentration value significantly lower than that of albendazole. Additionally, Mz25 induced extensive damage in the general morphology with marked alterations in the tegument and ultrastructural features. By homology modelling, we found that cestode SIRT2s showed a high conservation of the canonical sirtuin structure as well as in the residues related to Mz25 binding. Interestingly, some non-conservative mutations were found on the selectivity pocket (an Mz25-induced structural rearrangement on the active site), which represent a promising lead for developing selective cestode SIRT2 inhibitors derived from Mz25. Nevertheless, the Mz25 molecular target in M. vogae is unknown and remains to be determined. This report provides the basis for further studies of sirtuins to understand their roles in cestode biology and to develop selective sirtuin inhibitors to treat these neglected tropical diseases.


Subject(s)
Cestoda , Mesocestoides , Sirtuins , Albendazole/pharmacology , Animals , Cestoda/genetics , Mesocestoides/metabolism , Sirtuins/genetics , Sirtuins/metabolism
3.
PLoS Negl Trop Dis ; 15(3): e0009226, 2021 03.
Article in English | MEDLINE | ID: mdl-33657105

ABSTRACT

BACKGROUND: Echinococcosis and cysticercosis are neglected tropical diseases caused by cestode parasites (family Taeniidae). Not only there is a small number of approved anthelmintics for the treatment of these cestodiases, but also some of them are not highly effective against larval stages, such that identifying novel drug targets and their associated compounds is critical. Histone deacetylase (HDAC) enzymes are validated drug targets in cancers and other diseases, and have been gaining relevance for developing new potential anti-parasitic treatments in the last years. Here, we present the anthelmintic profile for a panel of recently developed HDAC inhibitors against the model cestode Mesocestoides vogae (syn. M. corti). METHODOLOGY/PRINCIPAL FINDINGS: Phenotypic screening was performed on M. vogae by motility measurements and optical microscopic observations. Some HDAC inhibitors showed potent anthelmintic activities; three of them -entinostat, TH65, and TH92- had pronounced anthelmintic effects, reducing parasite viability by ~100% at concentrations of ≤ 20 µM. These compounds were selected for further characterization and showed anthelmintic effects in the micromolar range and in a time- and dose-dependent manner. Moreover, these compounds induced major alterations on the morphology and ultrastructural features of M. vogae. The potencies of these compounds were higher than albendazole and the anthelmintic effects were irreversible. Additionally, we evaluated pairwise drug combinations of these HDAC inhibitors and albendazole. The results suggested a positive interaction in the anthelmintic effect for individual pairs of compounds. Due to the maximum dose approved for entinostat, adjustments in the dose regime and/or combinations with currently-used anthelmintic drugs are needed, and the selectivity of TH65 and TH92 towards parasite targets should be assessed. CONCLUSION, SIGNIFICANCE: The results presented here suggest that HDAC inhibitors represent novel and potent drug candidates against cestodes and pave the way to understanding the roles of HDACs in these parasites.


Subject(s)
Anthelmintics/pharmacology , Benzamides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Mesocestoides/drug effects , Pyridines/pharmacology , Albendazole/pharmacology , Animals , Cestode Infections , Larva/anatomy & histology , Larva/drug effects , Mesocestoides/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...