Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(6): e11251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38859888

ABSTRACT

Several studies have inferred the ecological significance regarding the morphometrics of Aristotle's lantern and the mechanical properties of magnesium in echinoid teeth. This study attempts to combine these aspects, connecting them to the trophic habits of three native and an invasive echinoid in the Eastern Mediterranean Sea. Spatiotemporal data from the central and southern Aegean Sea were obtained, regarding the relative size of lanterns and demi-pyramids of Arbacia lixula, Paracentrotus lividus, Sphaerechinus granularis, and the invasive echinoid Diadema setosum and the Mg/Ca ratios of four zones on the tooth cross-section. Since environmental factors affect the examined factors, data for temperature, salinity, and concentration of chlorophyll-a were included in a principal component analysis. A. lixula and P. lividus presented intraspecific differences in the relative size of the lantern and demi-pyramid, while S. granularis and D. setosum exhibited variation in the elongation index. Differences in the Mg/Ca ratios were observed for all species although in different zones. Temperature appears to be related to all Mg/Ca zones except for the stone part, while the elongation index showed an inverse trend to all other morphometric parameters. The results of the PCA for the four species on the spatiotemporal level exhibited a distinction of individuals with season but not species, except for A. lixula, an omnivore with a carnivorous tendency, which was clearly separated from the herbivorous species. Using hierarchical clustering on the principal components it was evident that the three native species occupy different clusters, but when D. setosum was added, it shared the same cluster with S. granularis. This might infer similar feeding preferences, specifically for coralline algae, which might lead to a swift in the ecological equilibrium in regions, where D. setosum is found, either by affecting habitat type, or by restricting the distribution of S. granularis as was previously observed with Diadema africanum.

2.
J Biol Res (Thessalon) ; 28(1): 11, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34016180

ABSTRACT

BACKGROUND: The Indo-Pacific sea urchin Diadema setosum has invaded the Mediterranean Sea and has spread along many locations in the southeastern part of the basin, where established populations exist on the shallow subtidal rocky shore. Diadema setosum is a ubiquitous species, of particular ecological importance due to the high levels of grazing pressure it imposes on benthic communities. Its biology, however, is not adequately studied, especially along its introduced range of distribution. The present study examines the population status of D. setosum outside its native range, in the Dodecanese island complex, south Aegean Sea. Thirty-four stations located across 16 islands were surveyed by scientific SCUBA-diving (up to a depth of 10 m) in December 2019 and June-July 2020. Samplings included: (i) visual census along transects to estimate relative abundance and population density, and (ii) random collection of specimens from densely populated stations to assess biometry and reproductive condition (histological examination of gonads) of D. setosum. RESULTS: Diadema setosum was found in 21 out of the 34 surveyed stations. The species had sparse populations of well-hidden individuals in rocky crevices, but with dense localized patches in Agathonisi, Leros, Kalymnos, Pserimos, Symi, Alimia and Chalki islands. In those seven islands, mean population density was 2.5 ± 1.48 individuals m-2. Diadema setosum had denser populations in shallower depths but larger dimensions in deeper; these results suggest segregated density and size patterns along a depth gradient. The size structure, according to the size frequency distribution of the test diameter, was unimodal with a fitted mode at 4.0-4.5 and 6.5-7.0 cm in shallow and deep populations, respectively. The examined morphometric relationships followed negative allometry, as previously suggested for the species within its native range of distribution, and test diameter appeared to be a good predictor of biomass. Diadema setosum specimens had immature gonads in winter and mature in summer, suggesting a synchronous reproductive pattern. These results conform to previous data from temperate populations of the species. CONCLUSIONS: Differences in local environmental conditions, e.g. hydrodynamics and habitat type, together with biotic interactions, e.g. recruitment and competition, probably shape D. setosum population in the south Aegean distributional range. The establishment of D. setosum has severe implications on benthic communities and local sea urchin populations demanding management measures to prevent the forecasted further expansion of this invasive species.

3.
Ecol Evol ; 11(24): 17734-17743, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003635

ABSTRACT

In the Mediterranean, Paracentrotus lividus and Sphaerechinus granularis are important drivers of benthic ecosystems, often coexisting in sublittoral communities. However, the introduction of the invasive diadematoid Diadema setosum, which utilizes venomous spines, may affect these communities. To describe the mechanical properties of the test and spines of these three species, specimens were collected in winter of 2019 from the sublittoral zone of the Dodecanese island complex, southeastern Aegean Sea. This region serves as a gateway for invasive species to the Mediterranean Sea. Crushing test was conducted on live individuals, while 3-point bending test was used to estimate spine stiffness. Porosity and mineralogy of the test and spine, thickness of the test, and breaking length of the spine were measured and compared, while the microstructural architecture was also determined. The test of S. granularis was the most robust (194.35 ± 59.59 N), while the spines of D. setosum (4.76 ± 2.13 GPa) exhibited highest flexibility. Increased porosity and thickness of the test were related to increased robustness, whereas increased flexibility of the spine was attributed to high porosity, indicating that porosity in the skeleton plays a key role in preventing fracture. The spines of S. granularis exhibited highest length after fracture % (71.54 ± 5.5%). D. setosum exhibited higher values of Mg concentration in the test (10%) compared with the spines (4%). For the first time, the mineralogy of an invasive species is compared with its native counterpart, while a comparison of the mechanical properties of different species of the same ecosystem also takes place. This study highlights different ways, in which sea urchins utilize their skeleton and showcases the ecological significance of these adaptations, one of which is the different ways of utilization of the skeleton for defensive purposes, while the other is the ability of D. setosum to decrease the Mg % of its skeleton degrading its mechanical properties, without compromising its defense, by depending on venomous bearing spines. This enables this species to occupy not only tropical habitats, where it is indigenous, but also temperate like the eastern Mediterranean, which it has recently invaded.

4.
Article in English | MEDLINE | ID: mdl-32745528

ABSTRACT

In many aquatic species, the negative effect of temperature variations has a significant impact on physiological performance since beyond Tp (upper pejus) and Tc (critical temperatures), according to the oxygen- and capacity-limited thermal tolerance (OCLTT), transition to hypoxemia and mitochondrial metabolism triggers the increase in reactive oxygen species (ROS) production. However, climate change may have different spatial impact, and as a result, areas with more favorable climatic conditions (refugia) can be identified. The aim of the present study, based on cellular stress responses, is the demarcation of these areas and the preservation of commercially important marine species. Under this prism, individuals of the species Callinectes sapidus (blue crab), Sepia officinalis (common cuttlefish), Holothuria tubulosa (sea cucumber) and Venus verrucosa (clam) from Thermaikos, Pagasitikos and Vistonikos gulf were collected seasonally. The results showed an increase in the levels of several stress indicators exhibiting the triggering of Heat Shock Response, MAPK activation, apoptotic phenomena and increased ubiquitilination during the summer sampling in relation to the spring and autumn samplings concerning blue crab and clam, while no changes were observed for common cuttlefish and sea cucumber. It seems that these cellular responses consist a cytoprotective mechanism against environmental thermal stress. Regarding collection sites, for all examined species, higher cellular stress levels were observed in Pagasitikos, and lower in Vistonikos gulf. This analysis of biochemical and molecular markers is expected to provide a clearer picture for the definition of "refugia" for the above species.


Subject(s)
Ecosystem , Invertebrates/physiology , Seasons , Stress, Physiological , Animals , Seawater
5.
PLoS One ; 5(8): e11842, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20689844

ABSTRACT

The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet-undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well. This abstract has been translated to other languages (File S1).


Subject(s)
Biodiversity , Animals , Classification , Computer Graphics , Endangered Species/statistics & numerical data , Mediterranean Sea , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...