Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Neuroinflammation ; 21(1): 149, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840141

ABSTRACT

Uncontrolled neuroinflammation mediates traumatic brain injury (TBI) pathology and impairs recovery. Interleukin-6 (IL-6), a pleiotropic inflammatory regulator, is associated with poor clinical TBI outcomes. IL-6 operates via classical-signaling through membrane-bound IL-6 receptor (IL-6R) and trans-signaling through soluble IL-6 receptor (s)IL-6R. IL-6 trans-signaling specifically contributes to neuropathology, making it a potential precision therapeutic TBI target. Soluble glycoprotein 130 (sgp130) prevents IL-6 trans-signaling, sparing classical signaling, thus is a possible treatment. Mice received either controlled cortical impact (CCI) (6.0 ± 0.2 m/s; 2 mm; 50-60ms) or sham procedures. Vehicle (VEH) or sgp130-Fc was subcutaneously administered to sham (VEH or 1 µg) and CCI (VEH, 0.25 µg or 1 µg) mice on days 1, 4, 7, 10 and 13 post-surgery to assess effects on cognition [Morris Water Maze (MWM)] and ipsilateral hemisphere IL-6 related biomarkers (day 21 post-surgery). CCI + sgp130-Fc groups (0.25 µg and 1 µg) were combined for analysis given similar behavior/biomarker outcomes. CCI + VEH mice had longer latencies and path lengths to the platform and increased peripheral zone time versus Sham + VEH and Sham + sgp130-Fc mice, suggesting injury-induced impairments in learning and anxiety. CCI + sgp130-Fc mice had shorter platform latencies and path lengths and had decreased peripheral zone time, indicating a therapeutic benefit of sgp130-Fc after injury on learning and anxiety. Interestingly, Sham + sgp130-Fc mice had shorter platform latencies, path lengths and peripheral zone times than Sham + VEH mice, suggesting a beneficial effect of sgp130-Fc, independent of injury. CCI + VEH mice had increased brain IL-6 and decreased sgp130 levels versus Sham + VEH and Sham + sgp130-Fc mice. There was no treatment effect on IL-6, sIL6-R or sgp130 in Sham + VEH versus Sham + sgp130-Fc mice. There was also no treatment effect on IL-6 in CCI + VEH versus CCI + sgp130-Fc mice. However, CCI + sgp130-Fc mice had increased sIL-6R and sgp130 versus CCI + VEH mice, demonstrating sgp130-Fc treatment effects on brain biomarkers. Inflammatory chemokines (MIP-1ß, IP-10, MIG) were increased in CCI + VEH mice versus Sham + VEH and Sham + sgp130-Fc mice. However, CCI + sgp130-Fc mice had decreased chemokine levels versus CCI + VEH mice. IL-6 positively correlated, while sgp130 negatively correlated, with chemokine levels. Overall, we found that systemic sgp130-Fc treatment after CCI improved learning, decreased anxiety and reduced CCI-induced brain chemokines. Future studies will explore sex-specific dosing and treatment mechanisms for sgp130-Fc therapy.


Subject(s)
Brain Injuries, Traumatic , Cytokine Receptor gp130 , Disease Models, Animal , Maze Learning , Mice, Inbred C57BL , Animals , Brain Injuries, Traumatic/drug therapy , Mice , Male , Cytokine Receptor gp130/metabolism , Maze Learning/drug effects , Maze Learning/physiology , Chemokines/metabolism , Interleukin-6/metabolism , Cognition/drug effects , Cognition/physiology
2.
Exp Neurol ; 374: 114690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218585

ABSTRACT

RNA binding motif 5 (RBM5) is a tumor suppressor in cancer but its role in the brain is unclear. We used conditional gene knockout (KO) mice to test if RBM5 inhibition in the brain affects chronic cortical brain tissue survival or function after a controlled cortical impact (CCI) traumatic brain injury (TBI). RBM5 KO decreased baseline contralateral hemispheric volume (p < 0.0001) and exacerbated ipsilateral tissue loss at 21 d after CCI in male mice vs. wild type (WT) (p = 0.0019). CCI injury, but not RBM5 KO, impaired beam balance performance (0-5d post-injury) and swim speed on the Morris Water Maze (MWM) (19-20d) (p < 0.0001). RBM5 KO was associated with mild learning impairment in female mice (p = 0.0426), reflected as a modest increase in escape latency early in training (14-18d post-injury). However, KO did not affect spatial memory at 19d post-injury in male or in female mice but it was impaired by CCI in females (p = 0.0061). RBM5 KO was associated with impaired visual function in male mice on the visible platform test at 20d post-injury (p = 0.0256). To explore signaling disturbances in KOs related to behavior, we first cross-referenced known brain-specific RBM5-regulated gene targets with genes in the curated RetNet database that impact vision. We then performed a secondary literature search on RBM5-regulated genes with a putative role in hippocampal function. Regulating synaptic membrane exocytosis 2 (RIMS) 2 was identified as a gene of interest because it regulates both vision and hippocampal function. Immunoprecipitation and western blot confirmed protein expression of a novel ~170 kDa RIMS2 variant in the cerebellum, and in the hippocampus, it was significantly increased in KO vs WT (p < 0.0001), and in a sex-dependent manner (p = 0.0390). Furthermore, male KOs had decreased total canonical RIMS2 levels in the cerebellum (p = 0.0027) and hippocampus (p < 0.0001), whereas female KOs had increased total RIMS1 levels in the cerebellum (p = 0.0389). In summary, RBM5 modulates brain function in mammals. Future work is needed to test if RBM5 dependent regulation of RIMS2 splicing effects vision and cognition, and to verify potential sex differences on behavior in a larger cohort of mice.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Nervous System Diseases , Tumor Suppressor Proteins , Animals , Female , Male , Mice , Brain/metabolism , Brain Injuries/pathology , Brain Injuries, Traumatic/pathology , Cell Cycle Proteins/metabolism , Cerebellum/pathology , DNA-Binding Proteins/metabolism , Gene Knockout Techniques , Hippocampus/metabolism , Maze Learning/physiology , Mice, Knockout , Nervous System Diseases/pathology , Proteostasis , RNA-Binding Proteins/metabolism
3.
Pediatr Res ; 94(4): 1355-1364, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37193753

ABSTRACT

BACKGROUND: Fibroblast growth factor 21 (FGF21) is a neuroprotectant with cognitive enhancing effects but with poorly characterized mechanism(s) of action, particularly in females. Prior studies suggest that FGF21 may regulate cold-shock proteins (CSPs) and CA2-marker proteins in the hippocampus but empirical evidence is lacking. METHODS: We assessed in normothermic postnatal day (PND) 10 female mice, if hypoxic-ischemic (HI) brain injury (25 min 8% O2/92% N2) altered endogenous levels of FGF21 in serum or in the hippocampus, or its receptor ß-klotho. We also tested if systemic administration of FGF21 (1.5 mg/kg) modulated hippocampal CSPs or CA2 proteins. Finally, we measured if FGF21 therapy altered markers of acute hippocampal injury. RESULTS: HI increased endogenous serum FGF21 (24 h), hippocampal tissue FGF21 (4d), and decreased hippocampal ß-klotho levels (4d). Exogenous FGF21 therapy modulated hippocampal CSP levels, and dynamically altered hippocampal CA2 marker expression (24 h and 4d). Finally, FGF21 ameliorated neuronal damage markers at 24 h but did not affect GFAP (astrogliosis) or Iba1 (microgliosis) levels at 4d. CONCLUSIONS: FGF21 therapy modulates CSP and CA2 protein levels in the injured hippocampus. These proteins serve different biological functions, but our findings suggest that FGF21 administration modulates them in a homeostatic manner after HI. IMPACT: Hypoxic-ischemic (HI) injury in female post-natal day (PND) 10 mice decreases hippocampal RNA binding motif 3 (RBM3) levels in the normothermic newborn brain. HI injury in normothermic newborn female mice alters serum and hippocampal fibroblast growth factor 21 (FGF21) levels 24 h post-injury. HI injury in normothermic newborn female mice alters hippocampal levels of N-terminal EF-hand calcium binding protein 2 (NECAB2) in a time-dependent manner. Exogenous FGF21 therapy ameliorates the HI-mediated loss of hippocampal cold-induced RNA-binding protein (CIRBP). Exogenous FGF21 therapy modulates hippocampal levels of CA2-marker proteins after HI.


Subject(s)
Cold Shock Proteins and Peptides , Hypoxia-Ischemia, Brain , Animals , Mice , Female , Animals, Newborn , Cold Shock Proteins and Peptides/metabolism , Fibroblast Growth Factors , Hippocampus/metabolism , Hypoxia-Ischemia, Brain/metabolism , Membrane Proteins/metabolism , Ischemia , Calcium-Binding Proteins/metabolism , Eye Proteins/metabolism
4.
Crit Care Med ; 51(2): e45-e59, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36661464

ABSTRACT

OBJECTIVES: Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN: Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING: Preclinical laboratory. SUBJECTS: Adult male C57BL/6J mice (n = 54). INTERVENTIONS: Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 µg/kg)/high-dose glibenclamide (10 µg/mouse). Seven-day subcutaneous infusions (0.4 µg/hr) were continued. MEASUREMENTS AND MAIN RESULTS: Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS: High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.


Subject(s)
Brain Contusion , Brain Edema , Brain Injuries, Traumatic , Brain Injuries , Animals , Male , Mice , Bayes Theorem , Brain Contusion/complications , Brain Contusion/drug therapy , Brain Edema/diagnostic imaging , Brain Edema/drug therapy , Brain Edema/etiology , Brain Injuries/drug therapy , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/complications , Disease Models, Animal , Endophenotypes , Glyburide/pharmacology , Glyburide/therapeutic use , Magnetic Resonance Imaging , Mice, Inbred C57BL
5.
Neurotrauma Rep ; 3(1): 340-351, 2022.
Article in English | MEDLINE | ID: mdl-36204388

ABSTRACT

Interleukin-17 (IL-17) is a proinflammatory cytokine primarily secreted in the brain by inflammatory T lymphocytes and glial cells. IL-17+ T-helper (Th17) cells are increased in the ipsilateral hemisphere after experimental traumatic brain injury (TBI), and IL-17 levels are increased in serum and brain tissue. We hypothesized that il17a and related gene expression would be increased in brain tissue after TBI in mice and il17a-/- mice would demonstrate neuroprotection versus wild type. The controlled cortical impact (CCI) model of TBI in adult male C57BL6/J mice was used for all experiments. Data were analyzed by analysis of variance (ANOVA) or repeated-measures two-way ANOVA with the Bonferroni correction. A value of p < 0.05 determined significance. Expression of il17a was significantly reduced in the ipsilateral cortex and hippocampus by day 3 after TBI, and expression remained low at 28 days. There were no differences between il17a-/- and il17a+/+ mice in beam balance, Morris water maze performance, or lesion volume after CCI. Surprisingly, naïve il17a -/- mice performed significantly (p = 0.02) worse than naïve il17a+/+ mice on the probe trial. In conclusion, sustained depression of il17a gene expression was observed in brains after TBI in adult mice. Genetic knockout of IL-17 was not neuroprotective after TBI. IL-17a may be important for memory retention in naïve mice.

6.
Biomolecules ; 12(10)2022 09 23.
Article in English | MEDLINE | ID: mdl-36291561

ABSTRACT

Pleckstrin homology domain and leucine rich repeat protein phosphatase (PHLPP) knockout mice have improved outcomes after a stroke, traumatic brain injury (TBI), and decreased maladaptive vascular remodeling following vascular injury. Thus, small-molecule PHLPP inhibitors have the potential to improve neurological outcomes in a variety of conditions. There is a paucity of data on the efficacy of the known experimental PHLPP inhibitors, and not all may be suited for targeting acute brain injury. Here, we assessed several PHLPP inhibitors not previously explored for neuroprotection (NSC13378, NSC25247, and NSC74429) that had favorable predicted chemistries for targeting the central nervous system (CNS). Neuronal culture studies in staurosporine (apoptosis), glutamate (excitotoxicity), and hydrogen peroxide (necrosis/oxidative stress) revealed that NSC74429 at micromolar concentrations was the most neuroprotective. Subsequent testing in a rat model of asphyxial cardiac arrest, and in a mouse model of severe TBI, showed that serial dosing of 1 mg/kg of NSC74429 over 3 days improved hippocampal survival in both models. Taken together, NSC74429 is neuroprotective across multiple insult mechanisms. Future pharmacokinetic and pharmacodynamic (PK/PD) studies are warranted to optimize dosing, and mechanistic studies are needed to determine the percentage of neuroprotection mediated by PHLPP1/2 inhibition, or potentially from the modulation of PHLPP-independent targets.


Subject(s)
Brain Injuries, Traumatic , Heart Arrest , Mice , Rats , Animals , Phosphoprotein Phosphatases/metabolism , Neuroprotection , Proto-Oncogene Proteins c-akt/metabolism , Nuclear Proteins/metabolism , Rodentia/metabolism , Staurosporine , Hydrogen Peroxide , Mice, Knockout , Brain Injuries, Traumatic/drug therapy , Glutamates
7.
Pediatr Res ; 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35184138

ABSTRACT

BACKGROUND: Neonates have high levels of cold-shock proteins (CSPs) in the normothermic brain for a limited period following birth. Hypoxic-ischemic (HI) insults in term infants produce neonatal encephalopathy (NE), and it remains unclear whether HI-induced pathology alters baseline CSP expression in the normothermic brain. METHODS: Here we established a version of the Rice-Vannucci model in PND 10 mice that incorporates rigorous temperature control. RESULTS: Common carotid artery (CCA)-ligation plus 25 min hypoxia (8% O2) in pups with targeted normothermia resulted in classic histopathological changes including increased hippocampal degeneration, astrogliosis, microgliosis, white matter changes, and cell signaling perturbations. Serial assessment of cortical, thalamic, and hippocampal RNA-binding motif 3 (RBM3), cold-inducible RNA binding protein (CIRBP), and reticulon-3 (RTN3) revealed a rapid age-dependent decrease in levels in sham and injured pups. CSPs were minimally affected by HI and the age point of lowest expression (PND 18) coincided with the timing at which heat-generating mechanisms mature in mice. CONCLUSIONS: The findings suggest the need to determine whether optimized therapeutic hypothermia (depth and duration) can prevent the age-related decline in neuroprotective CSPs like RBM3 in the brain, and improve outcomes during critical phases of secondary injury and recovery after NE. IMPACT: The rapid decrease in endogenous neuroprotective cold-shock proteins (CSPs) in the normothermic cortex, thalamus, and hippocampus from postnatal day (PND) 11-18, coincides with the timing of thermogenesis maturation in neonatal mice. Hypoxia-ischemia (HI) has a minor impact on the normal age-dependent decline in brain CSP levels in neonates maintained normothermic post-injury. HI robustly disrupts the expected correlation in RNA-binding motif 3 (RBM3) and reticulon-3 (RTN3). The potent neuroprotectant RBM3 is not increased 1-4 days after HI in a mouse model of neonatal encephalopathy (NE) in the term newborn and in which rigorous temperature control prevents the manifestation of endogenous post-insult hypothermia.

8.
J Neurotrauma ; 39(7-8): 577-589, 2022 04.
Article in English | MEDLINE | ID: mdl-35152732

ABSTRACT

RNA-binding motif 5 (RBM5) is a pro-death tumor suppressor gene in cancer cells. It remains to be determined if it is neurotoxic in the brain or rather if it plays a fundamentally different role in the central nervous system (CNS). Brain-specific RBM5 knockout (KO) mice were given a controlled cortical impact (CCI) traumatic brain injury (TBI). Markers of acute cellular damage and repair were measured in hippocampal homogenates 48 h post-CCI. Hippocampal CA1/CA3 cell counts were assessed 7 days post-CCI to determine if early changes in injury markers were associated with histological outcome. No genotype-dependent differences were found in the levels of apoptotic markers (caspase 3, caspase 6, and caspase 9). However, KO females had a paradoxical increase in markers of pro-death calpain activation (145/150-spectrin and breakdown products [SBDP]) and in DNA repair/survival markers. (pH2A.x and pCREB). CCI-injured male KOs had a significant increase in phosphorylated calcium/calmodulin-dependent protein kinase II (pCaMKII). Despite sex/genotype-dependent differences in KOs in the levels of acute cell signaling targets involved in cell death pathways, 7 day hippocampal neuronal survival did not differ from that of wild types (WTs). Similarly, no differences in astrogliosis were observed. Finally, gene analysis revealed increased estrogen receptor α (ERα) levels in the KO hippocampus in females and may suggest a novel mechanism to explain sex-dimorphic effects on cell signaling. In summary, RBM5 inhibition did not affect hippocampal survival after a TBI in vivo but did modify targets involved in neural signal transduction/Ca2+ signaling pathways. Findings here support the view that RBM5 may serve a purpose in the CNS that is dissimilar from its traditional pro-death role in cancer.


Subject(s)
Hippocampus , Signal Transduction , Animals , Cell Death , Female , Gene Deletion , Hippocampus/metabolism , Male , Mice , RNA-Binding Motifs
9.
J Neurotrauma ; 38(20): 2907-2917, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34269621

ABSTRACT

Civilian traumatic brain injury (TBI) guidelines recommend resuscitation of patients with hypotensive TBI with crystalloids. Increasing evidence, however, suggests that whole blood (WB) resuscitation may improve physiological and survival outcomes at lower resuscitation volumes, and potentially at a lower mean arterial blood pressure (MAP), than crystalloid after TBI and hemorrhagic shock (HS). The objective of this study was to assess whether WB resuscitation with two different MAP targets improved behavioral and histological outcomes compared with lactated Ringer's (LR) in a mouse model of TBI+HS. Anesthetized mice (n = 40) underwent controlled cortical impact (CCI) followed by HS (MAP = 25-27 mm Hg; 25 min) and were randomized to five groups for a 90 min resuscitation: LR with MAP target of 70 mm Hg (LR70), LR60, WB70, WB60, and monitored sham. Mice received a 20 mL/kg bolus of LR or autologous WB followed by LR boluses (10 mL/kg) every 5 min for MAP below target. Shed blood was reinfused after 90 min. Morris Water Maze testing was performed on days 14-20 post-injury. Mice were euthanized (21 d) to assess contusion and total brain volumes. Latency to find the hidden platform was greater versus sham for LR60 (p < 0.002) and WB70 (p < 0.007) but not LR70 or WB60. The WB resuscitation did not reduce contusion volume or brain tissue loss. The WB targeting a MAP of 60 mm Hg did not compromise function versus a 70 mm Hg target after CCI+HS, but further reduced fluid requirements (p < 0.03). Using LR, higher achieved MAP was associated with better behavioral performance (rho = -0.67, p = 0.028). Use of WB may allow lower MAP targets without compromising functional outcome, which could facilitate pre-hospital TBI resuscitation.


Subject(s)
Blood Pressure/drug effects , Blood Transfusion/methods , Brain Injuries, Traumatic/therapy , Ringer's Lactate/therapeutic use , Shock, Hemorrhagic/therapy , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/psychology , Emergency Medical Services , Fluid Therapy , Male , Maze Learning , Mice , Mice, Inbred C57BL , Psychomotor Performance , Resuscitation , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/psychology , Treatment Outcome
10.
J Neurotrauma ; 38(18): 2610-2621, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33957773

ABSTRACT

Traumatic brain injury (TBI) alters microbial populations present in the gut, which may impact healing and tissue recovery. However, the duration and impact of these changes on outcome from TBI are unknown. Short-chain fatty acids (SCFAs), produced by bacterial fermentation of dietary fiber, are important signaling molecules in the microbiota gut-brain axis. We hypothesized that TBI would lead to a sustained reduction in SCFA producing bacteria, fecal SCFAs concentration, and administration of soluble SCFAs would improve functional outcome after TBI. Adult mice (n = 10) had the controlled cortical impact (CCI) model of TBI performed (6 m/sec, 2-mm depth, 50-msec dwell). Stool samples were collected serially until 28 days after CCI and analyzed for SCFA concentration by high-performance liquid chromatography-mass spectrometry/mass spectrometry and microbiome analyzed by 16S gene sequencing. In a separate experiment, mice (n = 10/group) were randomized 2 weeks before CCI to standard drinking water or water supplemented with the SCFAs acetate (67.5 mM), propionate (25.9 mM), and butyrate (40 mM). Morris water maze performance was assessed on post-injury Days 14-19. Alpha diversity remained stable until 72 h, at which point a decline in diversity was observed without recovery out to 28 days. The taxonomic composition of post-TBI fecal samples demonstrated depletion of bacteria from Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae families, and enrichment of bacteria from the Verrucomicrobiaceae family. Analysis from paired fecal samples revealed a reduction in total SCFAs at 24 h and 28 days after TBI. Acetate, the most abundant SCFA detected in the fecal samples, was reduced at 7 days and 28 days after TBI. SCFA administration improved spatial learning after TBI versus standard drinking water. In conclusion, TBI is associated with reduced richness and diversity of commensal microbiota in the gut and a reduction in SCFAs detected in stool. Supplementation of soluble SCFAs improves spatial learning after TBI.


Subject(s)
Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/psychology , Dysbiosis/etiology , Fatty Acids, Volatile/metabolism , Feces/chemistry , Nervous System Diseases/etiology , Nervous System Diseases/psychology , Animals , Brain Injuries, Traumatic/metabolism , Brain-Gut Axis , Dietary Supplements , Fatty Acids, Volatile/chemistry , Fatty Acids, Volatile/pharmacology , Feces/microbiology , Gastrointestinal Microbiome , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Nervous System Diseases/metabolism , Psychomotor Performance/drug effects , RNA, Ribosomal, 16S/genetics , Treatment Outcome
11.
J Neurotrauma ; 38(17): 2473-2485, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33940936

ABSTRACT

Females have been understudied in pre-clinical and clinical traumatic brain injury (TBI), despite distinct biology and worse clinical outcomes versus males. Sulfonylurea receptor 1 (SUR1) inhibition has shown promising results in predominantly male TBI. A phase II trial is ongoing. We investigated whether SUR1 inhibition effects on contusional TBI differ by sex given that this may inform clinical trial design and/or interpretation. We studied the moderating effects of sex on post-injury brain tissue loss in 142 male and female ATP-binding cassette transporter subfamily C member 8 (Abcc8) wild-type, heterozygote, and knockout mice (12-15 weeks). Monkey fibroblast-like cells and mouse brain endothelium-derived cells were used for in vitro studies. Mice were injured with controlled cortical impact and euthanized 21 days post-injury to assess contusion, brain, and hemisphere volumes (vs. genotype- and sex-matched naïves). Abcc8 knockout mice had smaller contusion volumes (p = 0.012) and larger normalized contralateral (right) hemisphere volumes (nRHV; p = 0.03) after injury versus wild type. This was moderated by sex: Contusions were smaller (p = 0.020), nRHV was higher (p = 0.001), and there was less global atrophy (p = 0.003) in male, but not female, knockout versus wild-type mice after TBI. Less atrophy occurred in males for each copy of Abcc8 lost (p = 0.023-0.002, all outcomes). In vitro, sex-determining region Y (SRY) stimulated Abcc8 promoter activity and increased Abcc8 expression. Loss of Abcc8 strongly protected against post-traumatic cerebral atrophy in male, but not female, mice. This may partly be mediated by SRY on the Y-chromosome. Sex differences may have important implications for ongoing and future trials of SUR1 blockade.


Subject(s)
Brain Injuries, Traumatic/pathology , Sulfonylurea Receptors/physiology , Animals , Atrophy , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/metabolism , Cell Culture Techniques , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sex Factors , Sex-Determining Region Y Protein/physiology
12.
Neurocrit Care ; 34(3): 781-794, 2021 06.
Article in English | MEDLINE | ID: mdl-32886294

ABSTRACT

BACKGROUND: Despite increasing use in hemorrhagic shock (HS), whole blood (WB) resuscitation for polytrauma with traumatic brain injury (TBI) is largely unexplored. Current TBI guidelines recommend crystalloid for prehospital resuscitation. Although WB outperforms lactated Ringer's (LR) in increasing mean arterial pressure (MAP) in TBI + HS models, effects on brain tissue oxygenation (PbtO2), and optimal MAP remain undefined. METHODS: C57BL/6 mice (n = 72) underwent controlled cortical impact followed by HS (MAP = 25-27 mmHg). Ipsilateral hippocampal PbtO2 (n = 40) was measured by microelectrode. Mice were assigned to four groups (n = 18/group) for "prehospital" resuscitation (90 min) with LR or autologous WB, and target MAPs of 60 or 70 mmHg (LR60, WB60, LR70, WB70). Additional LR (10 ml/kg) was bolused every 5 min for MAP below target. RESULTS: LR requirements in WB60 (7.2 ± 5.0 mL/kg) and WB70 (28.3 ± 9.6 mL/kg) were markedly lower than in LR60 (132.8 ± 5.8 mL/kg) or LR70 (152.2 ± 4.8 mL/kg; all p < 0.001). WB70 MAP (72.5 ± 2.9 mmHg) was higher than LR70 (59.8 ± 4.0 mmHg, p < 0.001). WB60 MAP (68.7 ± 4.6 mmHg) was higher than LR60 (53.5 ± 3.2 mmHg, p < 0.001). PbtO2 was higher in WB60 (43.8 ± 11.6 mmHg) vs either LR60 (25.9 ± 13.0 mmHg, p = 0.04) or LR70 (24.1 ± 8.1 mmHg, p = 0.001). PbtO2 in WB70 (40.7 ± 8.8 mmHg) was higher than in LR70 (p = 0.007). Despite higher MAP in WB70 vs WB60 (p = .002), PbtO2 was similar. CONCLUSION: WB resuscitation after TBI + HS results in robust improvements in brain oxygenation while minimizing fluid volume when compared to standard LR resuscitation. WB resuscitation may allow for a lower prehospital MAP without compromising brain oxygenation when compared to LR resuscitation. Further studies evaluating the effects of these physiologic benefits on outcome after TBI with HS are warranted, to eventually inform clinical trials.


Subject(s)
Brain Injuries, Traumatic , Shock, Hemorrhagic , Animals , Brain Injuries, Traumatic/therapy , Disease Models, Animal , Isotonic Solutions/pharmacology , Mice , Mice, Inbred C57BL , Resuscitation , Ringer's Lactate , Shock, Hemorrhagic/therapy
13.
Brain Res ; 1747: 147056, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32798452

ABSTRACT

Signaling between intestinal microbiota and the brain influences neurologic outcome in multiple forms of brain injury. The impact of gut microbiota following traumatic brain injury (TBI) has not been well established. Our objective was to compare TBI outcomes in specific pathogen-free mice with or without depletion of intestinal bacteria. Adult male C57BL6/J SPF mice (n = 6/group) were randomized to standard drinking water or ampicillin (1 g/L), metronidazole (1 g/L), neomycin (1 g/L), and vancomycin (0.5 g/L) (AMNV) containing drinking water 14 days prior to controlled cortical impact (CCI) model of TBI. 16S rRNA gene sequencing of fecal pellets was performed and alpha and beta diversity determined. Hippocampal neuronal density and microglial activation was assessed 72 h post-injury by immunohistochemistry. In addition, mice (n = 8-12/group) were randomized to AMNV or no treatment initiated immediately after CCI and memory acquisition (fear conditioning) and lesion volume assessed. Mice receiving AMNV had significantly reduced alpha diversity (p < 0.05) and altered microbiota community composition compared to untreated mice (PERMANOVA: p < 0.01). Mice receiving AMNV prior to TBI had increased CA1 hippocampal neuronal density (15.2 ± 1.4 vs. 8.8 ± 2.1 cells/0.1 mm; p < 0.05) and a 26.6 ± 6.6% reduction in Iba-1 positive cells (p < 0.05) at 72 h. Mice randomized to AMNV immediately after CCI had attenuated associative learning deficit on fear conditioning test (%freeze Cue: 63.7 ± 2.7% vs. 41.0 ± 5.1%, p < 0.05) and decreased lesion volume (27.2 ± 0.8 vs. 24.6 ± 0.7 mm3, p < 0.05). In conclusion, depletion of intestinal microbiota was consistent with a neuroprotective effect whether initiated before or after injury in a murine model of TBI. Further investigations of the role of gut microbiota in TBI are warranted.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Gastrointestinal Microbiome/physiology , Hippocampus/physiopathology , Neurons/physiology , Recovery of Function/physiology , Animals , Brain Injuries, Traumatic/microbiology , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Hippocampus/microbiology , Hippocampus/pathology , Inflammation/microbiology , Inflammation/pathology , Inflammation/physiopathology , Mice , Neurons/microbiology , Neurons/pathology
14.
Neuroscience ; 440: 299-315, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32335213

ABSTRACT

The tumor suppressor RNA-binding motif 5 (RBM5) regulates the expression levels and cassette exon-definition (i.e. splicing) of a select set of mRNAs in a tissue-specific manner. Most RBM5-regulated targets were identified in oncological investigations and frequently involve genes which mediate apoptotic cell death. Little is known about the role of RBM5 in the brain. Also, it is unclear if a brain injury may be required to detect RBM5 mediated effects on pro-apoptotic genes due to their low expression levels in the healthy adult CNS at baseline. Conditional/floxed (brain-specific) gene deleter mice were generated to elucidate CNS-specific RBM5 mRNA targets. Male/female mice were subjected to a severe controlled cortical impact (CCI) traumatic brain injury (TBI) in order to increase the background expression of pro-death mRNAs and facilitate testing of the hypothesis that RBM5 inhibition decreases post-injury upregulation of caspases/FAS in the CNS. As expected, a CCI increased caspases/FAS mRNA in the injured cortex. RBM5 KO did not affect their levels or splicing. Surprisingly, KO increased the mRNA levels of novel targets including casein kinase 2 alpha prime interacting protein (Csnka2ip/CKT2) - a gene not thought to be expressed in the brain, contrary to findings here. Twenty-two unique splicing events were also detected in KOs including increased block-inclusion of cassette exons 20-22 in regulating synaptic membrane exocytosis 2 (Rims2). In conclusion, here we used genome-wide transcriptomic analysis on healthy and injured RBM5 KO mouse brain tissue to elucidate the first known gene targets of this enigmatic RBP in this CNS.


Subject(s)
Cell Cycle Proteins , Tumor Suppressor Proteins , Animals , Brain/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Female , Male , Mice , RNA-Binding Motifs , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism
15.
J Neurotrauma ; 36(2): 360-369, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30045665

ABSTRACT

High mobility group box 1 (HMGB1) is a prototypical danger-associated molecular pattern molecule that is considered a late mediator of neuro-inflammation after traumatic brain injury (TBI). Prior studies have suggested that targeting HMGB1 may lead to neuroprotective effects, but none of these studies have reported cognitive outcomes. We hypothesized that loss of HMGB1 before and after TBI would markedly attenuate post-traumatic brain edema, blood-brain barrier (BBB) permeability, improve functional deficits and long-term neuropathology versus control mice. Using the controlled cortical impact model and conditional global HMGB1 knockout (HMGB1 KO) mice, we demonstrate that there was a neuroprotective effect seen in the HMGB1 KO versus wild-type control evidenced by a significant reduction in contusion volume. However, two surprising findings were 1) the lack of benefit on either post-traumatic brain edema or BBB permeability, and 2) that spatial memory performance was impaired in HMGB1 KO naïve mice such that the behavioral effects of HMGB1 deletion in uninjured naïve mice were similar to those observed after TBI. Our data suggest the possibility that the role of HMGB1 in TBI is a "double-edged sword"; that is, despite the benefits on selected aspects of secondary injury, the sustained absence of HMGB1 may impair cognitive function, even in naïve mice. Given the pleiotropic actions of extracellular and intracellular HMGB1, when evaluating the potential use of therapies targeting HMGB1, effects on long-term cognitive outcome should be carefully evaluated. It also may be prudent in future studies to examine cell-specific effects of manipulating the HMGB1 pathway.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , HMGB1 Protein/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Edema/etiology , Brain Edema/metabolism , Brain Edema/pathology , Capillary Permeability/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Mice , Mice, Knockout
16.
Sci Rep ; 8(1): 7158, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29739983

ABSTRACT

Suprachiasmatic nucleus circadian oscillatory protein (SCOP) (a.k.a. PHLPP1) regulates long-term memory consolidation in the brain. Using a mouse model of controlled cortical impact (CCI) we tested if (1) brain tissue levels of SCOP/PHLPP1 increase after a traumatic brain injury (TBI), and (2) if SCOP/PHLPP1 gene knockout (KO) mice have improved (or worse) neurologic outcomes. Blood chemistry (pH, pCO2, pO2, pSO2, base excess, sodium bicarbonate, and osmolarity) and arterial pressure (MAP) differed in isoflurane anesthetized WT vs. KOs at baseline and up to 1 h post-injury. CCI injury increased cortical/hippocampal SCOP/PHLPP1 levels in WTs 7d and 14d post-injury. Injured KOs had higher brain tissue levels of phosphorylated AKT (pAKT) in cortex (14d post-injury), and higher levels of phosphorylated MEK (pMEK) in hippocampus (7d and 14d post-injury) and in cortex (7d post-injury). Consistent with an important role of SCOP/PHLPP1 on memory function, injured-KOs had near normal performance on the probe trial of the Morris water maze, whereas injured-WTs were impaired. CA1/CA3 hippocampal survival was lower in KOs vs. WTs 24 h post-injury but equivalent by 7d. No difference in 21d cortical lesion volume was detected. SCOP/PHLPP1 overexpression in cultured rat cortical neurons had no effect on 24 h cell death after a mechanical stretch-injury.


Subject(s)
Brain Injuries/physiopathology , Memory, Long-Term/physiology , Neurons/metabolism , Nuclear Proteins/genetics , Phosphoprotein Phosphatases/genetics , Animals , Brain Injuries/diagnostic imaging , Brain Injuries/genetics , CA1 Region, Hippocampal/diagnostic imaging , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiopathology , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/physiopathology , Humans , MAP Kinase Kinase Kinase 1/genetics , Maze Learning , Mice , Mice, Knockout , Neurons/pathology , Primary Cell Culture , Rats
17.
J Neurotrauma ; 35(17): 2125-2135, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29648981

ABSTRACT

Cerebral edema is critical to morbidity/mortality in traumatic brain injury (TBI) and is worsened by hypotension. Glibenclamide may reduce cerebral edema by inhibiting sulfonylurea receptor-1 (Sur1); its effect on diffuse cerebral edema exacerbated by hypotension/resuscitation is unknown. We aimed to determine if glibenclamide improves pericontusional and/or diffuse edema in controlled cortical impact (CCI) (5m/sec, 1 mm depth) plus hemorrhagic shock (HS) (35 min), and compare its effects in CCI alone. C57BL/6 mice were divided into five groups (n = 10/group): naïve, CCI+vehicle, CCI+glibenclamide, CCI+HS+vehicle, and CCI+HS+glibenclamide. Intravenous glibenclamide (10 min post-injury) was followed by a subcutaneous infusion for 24 h. Brain edema in injured and contralateral hemispheres was subsequently quantified (wet-dry weight). This protocol brain water (BW) = 80.4% vehicle vs. 78.3% naïve, p < 0.01) but was not reduced by glibenclamide (I%BW = 80.4%). Ipsilateral edema also developed in CCI alone (I%BW = 80.2% vehicle vs. 78.3% naïve, p < 0.01); again unaffected by glibenclamide (I%BW = 80.5%). Contralateral (C) %BW in CCI+HS was increased in vehicle (78.6%) versus naive (78.3%, p = 0.02) but unchanged in CCI (78.3%). At 24 h, glibenclamide treatment in CCI+HS eliminated contralateral cerebral edema (C%BW = 78.3%) with no difference versus naïve. By 72 h, contralateral cerebral edema had resolved (C%BW = 78.5 ± 0.09% vehicle vs. 78.3 ± 0.05% naïve). Glibenclamide decreased 24 h contralateral cerebral edema in CCI+HS. This beneficial effect merits additional exploration in the important setting of TBI with polytrauma, shock, and resuscitation. Contralateral edema did not develop in CCI alone. Surprisingly, 24 h of glibenclamide treatment failed to decrease ipsilateral edema in either model. Interspecies dosing differences versus prior studies may play an important role in these findings. Mechanisms underlying brain edema may differ regionally, with pericontusional/osmolar swelling refractory to glibenclamide but diffuse edema (via Sur1) from combined injury and/or resuscitation responsive to this therapy. TBI phenotype may mandate precision medicine approaches to treat brain edema.


Subject(s)
Brain Edema/drug therapy , Brain Edema/etiology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Glyburide/therapeutic use , Hypoglycemic Agents/therapeutic use , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/drug therapy , Animals , Blood Glucose/metabolism , Disease Models, Animal , Glyburide/administration & dosage , Hypoglycemic Agents/administration & dosage , Infusions, Subcutaneous , Injections, Intravenous , Male , Mice , Mice, Inbred C57BL
18.
J Neurotrauma ; 34(7): 1337-1350, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27869558

ABSTRACT

Resuscitation with polynitroxylated pegylated hemoglobin (PNPH), a pegylated bovine hemoglobin decorated with nitroxides, eliminated the need for fluid administration, reduced intracranial pressure (ICP) and brain edema, and produced neuroprotection in vitro and in vivo versus Lactated Ringer's solution (LR) in experimental traumatic brain injury (TBI) plus hemorrhagic shock (HS). We hypothesized that resuscitation with PNPH would improve acute physiology versus whole blood after TBI+HS and would be safe and effective across a wide dosage range. Anesthetized mice underwent controlled cortical impact and severe HS to mean arterial pressure (MAP) of 25-27 mm Hg for 35 min, then were resuscitated with PNPH, autologous whole blood, or LR. Markers of acute physiology, including mean arterial blood pressure (MAP), heart rate (HR), blood gases/chemistries, and brain oxygenation (PbtO2), were monitored for 90 min on room air followed by 15 min on 100% oxygen. In a second experiment, the protocol was repeated, except mice were resuscitated with PNPH with doses between 2 and 100 mL/kg. ICP and 24 h %-brain water were evaluated. PNPH-resuscitated mice had higher MAP and lower HR post-resuscitation versus blood or LR (p < 0.01). PNPH-resuscitated mice, versus those resuscitated with blood or LR, also had higher pH and lower serum potassium (p < 0.05). Blood-resuscitated mice, however, had higher PbtO2 versus those resuscitated with LR and PNPH, although PNPH had higher PbtO2 versus LR (p < 0.05). PNPH was well tolerated across the dosing range and dramatically reduced fluid requirements in all doses-even 2 or 5 mL/kg (p < 0.001). ICP was significantly lower in PNPH-treated mice for most doses tested versus in LR-treated mice, although %-brain water did not differ between groups. Resuscitation with PNPH, versus resuscitation with LR or blood, improved MAP, HR, and ICP, reduced acidosis and hyperkalemia, and was well tolerated and effective across a wide dosing range, supporting ongoing pre-clinical development of PNPH for TBI resuscitation.


Subject(s)
Blood Transfusion, Autologous/methods , Brain Edema/drug therapy , Brain Injuries, Traumatic/drug therapy , Hemoglobins/pharmacology , Isotonic Solutions/pharmacology , Neuroprotective Agents/pharmacology , Resuscitation/methods , Shock, Hemorrhagic/drug therapy , Animals , Brain Edema/etiology , Brain Injuries, Traumatic/complications , Cattle , Disease Models, Animal , Dose-Response Relationship, Drug , Hemoglobins/administration & dosage , Isotonic Solutions/administration & dosage , Mice , Mice, Inbred C57BL , Neuroprotective Agents/administration & dosage , Ringer's Lactate
19.
Methods Mol Biol ; 1462: 393-411, 2016.
Article in English | MEDLINE | ID: mdl-27604730

ABSTRACT

Patients with severe traumatic brain injury (TBI) frequently present with concomitant injuries that may cause secondary brain injury and impact outcomes. Animal models have been developed that combine contemporary models of TBI with a secondary neurologic insult such as hypoxia, shock, long bone fracture, and radiation exposure. Combined injury models may be particularly useful when modeling treatment strategies and in efforts to map basic research to a heterogeneous patient population. Here, we review these models and their collective contribution to the literature on TBI. In addition, we provide protocols and notes for two well-characterized models of TBI plus hemorrhagic shock.


Subject(s)
Disease Models, Animal , Trauma, Nervous System/etiology , Trauma, Nervous System/pathology , Animals , Brain Injuries/etiology , Brain Injuries/pathology , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/pathology , Craniospinal Irradiation/adverse effects , Hypotension/complications , Hypoxia/complications , Mice
20.
J Cereb Blood Flow Metab ; 35(4): 655-66, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25586139

ABSTRACT

Splicing factors (SFs) coordinate nuclear intron/exon splicing of RNA. Splicing factor disturbances can cause cell death. RNA binding motif 5 (RBM5) and 10 (RBM10) promote apoptosis in cancer cells by activating detrimental alternative splicing of key death/survival genes. The role(s) of RBM5/10 in neurons has not been established. Here, we report that RBM5 knockdown in human neuronal cells decreases caspase activation by staurosporine. In contrast, RBM10 knockdown augments caspase activation. To determine whether brain injury alters RBM signaling, we measured RBM5/10 protein in mouse cortical/hippocampus homogenates after controlled cortical impact (CCI) traumatic brain injury (TBI) plus hemorrhagic shock (CCI+HS). The RBM5/10 staining was higher 48 to 72 hours after injury and appeared to be increased in neuronal nuclei of the hippocampus. We also measured levels of other nuclear SFs known to be essential for cellular viability and report that splicing factor 1 (SF1) but not splicing factor 3A (SF3A) decreased 4 to 72 hours after injury. Finally, we confirm that RBM5/10 regulate protein expression of several target genes including caspase-2, cellular FLICE-like inhibitory protein (c-FLIP), LETM1 Domain-Containing Protein 1 (LETMD1), and amyloid precursor-like protein 2 (APLP2) in neuronal cells. Knockdown of RBM5 appeared to increase expression of c-FLIP(s), LETMD1, and APLP2 but decrease caspase-2.


Subject(s)
Brain Injuries/metabolism , Brain Injuries/pathology , Brain/pathology , Caspases/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Neurons/pathology , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Brain/metabolism , Brain Injuries/genetics , Cell Cycle Proteins/analysis , Cell Cycle Proteins/genetics , Cell Line , Cells, Cultured , DNA-Binding Proteins/analysis , DNA-Binding Proteins/genetics , Enzyme Activation , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , RNA-Binding Proteins/analysis , RNA-Binding Proteins/genetics , Signal Transduction , Tumor Suppressor Proteins/analysis , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...