Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Invest Dermatol ; 142(4): 1103-1113.e11, 2022 04.
Article in English | MEDLINE | ID: mdl-34537191

ABSTRACT

Allergic contact dermatitis (ACD) is a prevalent and poorly controlled inflammatory disease caused by skin infiltration of T cells and granulocytes. The beta common (ßc) cytokines GM-CSF, IL-3, and IL-5 are powerful regulators of granulocyte function that signal through their common receptor subunit ßc, a property that has made ßc an attractive target to simultaneously inhibit these cytokines. However, the species specificity of ßc has precluded testing of inhibitors of human ßc in mouse models. To overcome this problem, we developed a human ßc receptor transgenic mouse strain with a hematopoietic cell‒specific expression of human ßc instead of mouse ßc. Human ßc receptor transgenic cells responded to mouse GM-CSF and IL-5 but not to IL-3 in vitro and developed tissue pathology and cellular inflammation comparable with those in wild-type mice in a model of ACD. Similarly, Il3-/- mice developed ACD pathology comparable with that of wild-type mice. Importantly, the blocking anti-human ßc antibody CSL311 strongly suppressed ear pinna thickening and histopathological changes typical of ACD and reduced accumulation of neutrophils, mast cells, and eosinophils in the skin. These results show that GM-CSF and IL-5 but not IL-3 are major mediators of ACD and define the human ßc receptor transgenic mouse as a unique platform to test the inhibitors of ßc in vivo.


Subject(s)
Dermatitis, Contact , Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Cytokines , Eosinophils , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-3/metabolism , Interleukin-5/metabolism , Mice , Mice, Transgenic
2.
Science ; 367(6478)2020 02 07.
Article in English | MEDLINE | ID: mdl-31919129

ABSTRACT

Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell-based immunotherapies.


Subject(s)
Antigens, Neoplasm/immunology , Butyrophilins/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Antigens, CD/chemistry , Antigens, CD/immunology , Butyrophilins/chemistry , Butyrophilins/genetics , Cell Line, Tumor , Humans , Ligands , Lymphocyte Activation , Phosphorylation , Protein Domains , Protein Multimerization
4.
Clin Transl Immunology ; 8(12): e01097, 2019.
Article in English | MEDLINE | ID: mdl-31890206

ABSTRACT

OBJECTIVES: Plasmacytoid dendritic cells (pDCs), through the production of type 1 interferons (IFNs) and other cytokines, are major contributors to systemic lupus erythematosus (SLE) pathogenesis. IL-3 promotes pDC survival, but its role in SLE is not well characterised. This study investigated serum IL-3 and IFN levels, and a whole blood 'IL-3 gene signature', in human SLE. METHODS: Serum cytokine levels were measured by ELISA in n = 42 SLE patients, and n = 44 healthy donors. IL-3-regulated genes were determined by RNASeq of healthy donor whole blood cells (WBCs) stimulated in vitro with IL-3 for 6 or 24 h. Whole blood cell RNASeq analysis was undertaken in a separate cohort of n = 31 SLE patients, and n = 28 healthy donors. RESULTS: Serum IL-3 levels correlated with IFNα (r = 0.612, 95% CI 0.455-0.733, P < 0.001) and type III IFN (r = 0.585, 95% CI 0.406-0.720, P < 0.0001). IL-3 stimulation of WBC in vitro altered 794 genes (-1 ≥ logFC ≥ 1, FDR < 0.05), of which 35 overlapped with genes differentially expressed between SLE and healthy donors. These 35 genes were expressed in 27/31 SLE donors, revealing the presence of an 'IL-3 gene signature'. There was strong correlation between the IL-3 signature and an IFN signature, as determined by hierarchical clustering of the 500 most variable genes in SLE donors (r = 0.939, 95% CI 0.898-0.964, P < 0.0001). CONCLUSION: A dual IL-3/IFN gene signature is a feature of SLE. An association between IL-3 and IFN raises the possibility that dual blockade of IL-3 and IFN may be especially useful for SLE patients with this dual cytokine gene signature.

5.
Article in English | MEDLINE | ID: mdl-28716883

ABSTRACT

The ß common ([ßc]/CD131) family of cytokines comprises granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5, all of which use ßc as their key signaling receptor subunit. This is a prototypic signaling subunit-sharing cytokine family that has unveiled many biological paradigms and structural principles applicable to the IL-2, IL-4, and IL-6 receptor families, all of which also share one or more signaling subunits. Originally identified for their functions in the hematopoietic system, the ßc cytokines are now known to be truly pleiotropic, impacting on multiple cell types, organs, and biological systems, and thereby controlling the balance between health and disease. This review will focus on the emerging biological roles for the ßc cytokines, our progress toward understanding the mechanisms of receptor assembly and signaling, and the application of this knowledge to develop exciting new therapeutic approaches against human disease.


Subject(s)
Cytokines/classification , Cytokines/metabolism , Cytokines/genetics , Gene Expression Regulation/physiology , Humans , Inflammation/metabolism , Sepsis/metabolism , Signal Transduction
6.
JCI Insight ; 1(6): e86131, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27699260

ABSTRACT

To date, the major target of biologic therapeutics in systemic lupus erythematosus (SLE) has been the B cell, which produces pathogenic autoantibodies. Recently, targeting type I IFN, which is elaborated by plasmacytoid dendritic cells (pDCs) in response to endosomal TLR7 and TLR9 stimulation by SLE immune complexes, has shown promising results. pDCs express high levels of the IL-3Rα chain (CD123), suggesting an alternative potential targeting strategy. We have developed an anti-CD123 monoclonal antibody, CSL362, and show here that it affects key cell types and cytokines that contribute to SLE. CSL362 potently depletes pDCs via antibody-dependent cell-mediated cytotoxicity, markedly reducing TLR7, TLR9, and SLE serum-induced IFN-α production and IFN-α-upregulated gene expression. The antibody also inhibits TLR7- and TLR9-induced plasmablast expansion by reducing IFN-α and IL-6 production. These effects are more pronounced than with IFN-α blockade alone, possibly because pDC depletion reduces production of other IFN subtypes, such as type III, as well as non-IFN proinflammatory cytokines, such as IL-6. In addition, CSL362 depletes basophils and inhibits IL-3 signaling. These effects were confirmed in cells derived from a heterogeneous population of SLE donors, various IFN-dependent autoimmune diseases, and healthy controls. We also demonstrate in vivo activity of CSL362 following its s.c. administration to cynomolgus monkeys. This spectrum of effects provides a preclinical rationale for the therapeutic evaluation of CSL362 in SLE.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Dendritic Cells/immunology , Interleukin-3 Receptor alpha Subunit/immunology , Lupus Erythematosus, Systemic/therapy , Antibodies, Monoclonal/immunology , Antigen-Antibody Complex , Cells, Cultured , Humans , Interferon-alpha/blood , Interleukin-6/immunology , Lupus Erythematosus, Systemic/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 9/immunology
7.
MAbs ; 8(3): 436-53, 2016.
Article in English | MEDLINE | ID: mdl-26651396

ABSTRACT

The ß common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared ß common (ßc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human ßc receptor. The binding epitope of CSL311 on the ßc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human ßc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 ß common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human ßc receptor is central to pathogenesis. The coordinates for the ßc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU).


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Cytokine Receptor Common beta Subunit , Epitopes , Granulocyte-Macrophage Colony-Stimulating Factor , Interleukin-3 , Interleukin-5 , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Monoclonal, Murine-Derived/therapeutic use , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/immunology , Asthma/drug therapy , Asthma/immunology , Asthma/pathology , Crystallography, X-Ray , Cytokine Receptor Common beta Subunit/chemistry , Cytokine Receptor Common beta Subunit/immunology , Eosinophils/immunology , Eosinophils/pathology , Epitopes/chemistry , Epitopes/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interleukin-3/antagonists & inhibitors , Interleukin-3/immunology , Interleukin-5/antagonists & inhibitors , Interleukin-5/immunology , Mice
8.
Haematologica ; 100(7): 914-26, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26130514

ABSTRACT

The prognosis of older patients with acute myelogenous leukemia is generally poor. The interleukin-3 receptor α-chain (CD123) is highly expressed on the surface of acute leukemia cells compared with normal hematopoietic stem cells. CSL362 is a fully humanized, CD123-neutralizing monoclonal antibody containing a modified Fc structure, which enhances human natural killer cell antibody-dependent cell-mediated cytotoxicity. Six continuous acute myelogenous leukemia xenografts established from patient explants and characterized by cell and molecular criteria, produced progressively lethal disease 42-202 days after transplantation. CSL362 alone reduced engraftment of one of four and three of four acute myelogenous leukemia xenografts in the bone marrow and peripheral organs, respectively. A cytarabine and daunorubicin regimen was optimized using this model to identify potentially synergistic interactions with CSL362. Cytarabine/daunorubicin improved the survival of mice engrafted with four of four acute myelogenous leukemia xenografts by 31-41 days. Moreover, CSL362 extended the survival of cytarabine/daunorubicin-treated mice for two of two acute myelogenous leukemia xenografts, while augmentation of natural killer cell-deficient NSG mice with adoptively transferred human natural killer cells improved survival against a single xenograft. Interestingly, this enhanced CSL362 efficacy was lost in the absence of chemotherapy. This study shows that acute myelogenous leukemia xenografts provide a platform for the evaluation of new therapeutics, simulating complex in vivo interactions, and that the in vivo efficacy of CSL362 supports continued clinical development of this drug.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Immunocompromised Host , Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors , Leukemia, Myeloid, Acute/therapy , Adoptive Transfer , Animals , Cytarabine/pharmacology , Daunorubicin , Female , Gene Expression , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/immunology , Interleukin-3 Receptor alpha Subunit/genetics , Interleukin-3 Receptor alpha Subunit/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Mice , Survival Analysis , Transplantation, Heterologous , Xenograft Model Antitumor Assays
9.
Blood ; 123(8): 1218-28, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24363400

ABSTRACT

Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) in eliminating differentiated chronic myeloid leukemia (CML) cells, recent evidence suggests that leukemic stem and progenitor cells (LSPCs) persist long term, which may be partly attributable to cytokine-mediated resistance. We evaluated the expression of the interleukin 3 (IL-3) receptor α subunit (CD123), an established marker of acute myeloid leukemia stem cells, on CML LSPCs and the potential of targeting those cells with the humanized anti-CD123 monoclonal antibody CSL362. Compared with normal donors, CD123 expression was higher in CD34(+)/CD38(-) cells of both chronic phase and blast crisis CML patients, with levels increasing upon disease progression. CSL362 effectively targeted CML LSPCs by selective antibody-dependent cell-mediated cytotoxicity (ADCC)-facilitated lysis of CD123(+) cells and reduced leukemic engraftment in mice. Importantly, not only were healthy donor allogeneic natural killer (NK) cells able to mount an effective CSL362-mediated ADCC response, but so were CML patients' autologous NK cells. In addition, CSL362 also neutralized IL-3-mediated rescue of TKI-induced cell death. Notably, combination of TKI- and CSL362-induced ADCC caused even greater reduction of CML progenitors and further augmented their preferential elimination over normal hematopoietic stem and progenitor cells. Thus, our data support the further evaluation of CSL362 therapy in CML.


Subject(s)
Antibodies, Monoclonal/immunology , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Receptors, Interleukin-3/immunology , ADP-ribosyl Cyclase 1/metabolism , Adult , Aged , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antigens, CD34/metabolism , Cell Line , Female , Humans , Interleukin-3 Receptor alpha Subunit/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukemia, Erythroblastic, Acute/immunology , Leukemia, Erythroblastic, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Stem Cells/immunology , Stem Cells/metabolism , Stem Cells/pathology
10.
Cell Stem Cell ; 5(1): 31-42, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19570512

ABSTRACT

Leukemia stem cells (LSCs) initiate and sustain the acute myeloid leukemia (AML) clonal hierarchy and possess biological properties rendering them resistant to conventional chemotherapy. The poor survival of AML patients raises expectations that LSC-targeted therapies might achieve durable remissions. We report that an anti-interleukin-3 (IL-3) receptor alpha chain (CD123)-neutralizing antibody (7G3) targeted AML-LSCs, impairing homing to bone marrow (BM) and activating innate immunity of nonobese diabetic/severe-combined immunodeficient (NOD/SCID) mice. 7G3 treatment profoundly reduced AML-LSC engraftment and improved mouse survival. Mice with pre-established disease showed reduced AML burden in the BM and periphery and impaired secondary transplantation upon treatment, establishing that AML-LSCs were directly targeted. 7G3 inhibited IL-3-mediated intracellular signaling of isolated AML CD34(+)CD38(-) cells in vitro and reduced their survival. These results provide clear validation for therapeutic monoclonal antibody (mAb) targeting of AML-LSCs and for translation of in vivo preclinical research findings toward a clinical application.


Subject(s)
Antibodies, Monoclonal/pharmacology , Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors , Leukemia, Myeloid, Acute/therapy , Neoplastic Stem Cells/drug effects , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Monoclonal/therapeutic use , Antigens, CD34/metabolism , Bone Marrow/metabolism , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Hematopoietic Stem Cells/metabolism , Humans , Interleukin-3 Receptor alpha Subunit/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Myeloid, Acute/immunology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplastic Stem Cells/metabolism , Stem Cell Transplantation , Transplantation, Heterologous , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL