Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
2.
AMB Express ; 13(1): 88, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615904

ABSTRACT

Chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has caused extreme losses in amphibian biodiversity. Finding bacteria that produce metabolites with antifungal properties may turn out to be invaluable in the fight against this devastating disease. The entomopathogenic bacteria, Xenorhabdus szentirmaii and X. budapestensis produce secondary metabolites that are effective against a wide range of fungal plant pathogens. To assess whether they may also be effective against Bd, we extracted cell-free culture media (CFCM) from liquid cultures of X. szentirmaii and X. budapestensis and tested their ability to inhibit Bd growth in vitro. As a second step, using juvenile common toads (Bufo bufo) experimentally infected with Bd we also tested the in vivo antifungal efficacy of X. szentirmaii CFCM diluted to 2 and 10% (v/v), while also assessing possible malign side effects on amphibians. Results of the in vitro experiment documented highly effective growth inhibition by CFCMs of both Xenorhabdus species. The in vivo experiment showed that treatment with CFCM of X. szentirmaii applied at a dilution of 10% resulted in infection intensities reduced by ca. 73% compared to controls and to juvenile toads treated with CFCM applied at a dilution of 2%. At the same time, we detected no negative side effects of treatment with CFCM on toad survival and development. Our results clearly support the idea that metabolites of X. szentirmaii, and perhaps of several other Xenorhabdus species as well, may prove highly useful for the treatment of Bd infected amphibians.

3.
Sci Total Environ ; 897: 166094, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37582445

ABSTRACT

Increasing metal(loid) contamination in urban soils and its impact on soil microbial community have attracted considerable attention. In the present study, the physicochemical parameters and the effects of twelve metal(loid) pollution on soil microbial diversity, their ecotoxic effects, and human health risk assessment in urban soils with different industrial background were studied in comparison with an unpolluted forest soil sample. Results showed that urban soils were highly contaminated, and metal(loid) contamination significantly influenced structure of the soil microbial communities. In all samples the bacterial community was dominated by Proteobacteria, and on the level of phyla characteristic differences were not possible to observe between polluted and control sampling sites. However, clear differences emerged at class and genus level, where several rare taxa disappeared from contaminated urban soils. Simper test results showed that there is 71.6 % bacterial OTU and 9.5 % bacterial diversity dissimilarity between polluted and control samples. Ratio of Patescibacteria, Armatimonadetes, Chlamydiae, Fibrobacteres, and Gemmatimonadetes indicated a significant (p < 0.05) positive correlation with soil Zn, Cr, Pb, Sn, Cu, Mn content, suggest that metal(loid)s strongly influence the structure of microbial community. In contrast, the presence of metal(loid) contamination in urban soils has been found to significantly reduce the population of Archaeal communities. This can be attributed to the depletion of organic matter caused by contamination that reached a minimum of 0.5 m/m% for nitrate and 0.9 m/m% for total organic carbon. The values of urban soil pH were close to neutral, ranging from 5.9 to 8.3. The findings of ecotoxicology test are alarming, as all the studied urban soil sites were cytotoxic to soil microorganisms, and in one site metal(loid) contamination reached genotoxic level. Moreover, all the metal(loid) contaminated sites pose severe and persistent health risk to children, highlighting the urgent need for effective measures to mitigate metal(loid) pollution in urban areas.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Child , Humans , Soil/chemistry , Soil Pollutants/analysis , Metals/analysis , Environmental Pollution , Bacteria , Metals, Heavy/analysis , Environmental Monitoring
4.
Food Microbiol ; 104: 103972, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35287801

ABSTRACT

The stochastic growth of homogeneous bacterial populations in the wells of a microtiter plate was studied as a function of the random initial cell number and their random individual lag times. These significantly affected the population growth in the well, while the maximum specific growth rate of the population was constant (or its variance was negligible) for each well. We showed the advantages of the mathematical assumption that a transformation of the single cell lag time, called the single cell physiological state (or, more accurately, that of the sub-population generated by the single cell) follow the Beta distribution. Simulations demonstrated what patterns would such assumption generate for the distribution of the detection times observed in the wells. An estimation procedure was developed, based on the beta-assumption, that resulted in an explicit expression for the expected value of the single cell physiological state as a function of measured "time to detection" values using turbidity experiments. The method was illustrated using laboratory data with Escherichia coli, Salmonella enterica subsp. enterica strains. The results gave a basis to quantify the difference between the studied organisms in terms of their single-cell kinetics.


Subject(s)
Salmonella enterica , Escherichia coli
5.
FEMS Microbiol Ecol ; 97(10)2021 09 16.
Article in English | MEDLINE | ID: mdl-34498665

ABSTRACT

There is an increasing interest in studying bacterial-fungal interactions (BFIs), also the interactions of Pleurotus ostreatus, a model white-rot fungus and important cultivated mushroom. In Europe, P. ostreatus is produced on a wheat straw-based substrate with a characteristic bacterial community, where P. ostreatus is exposed to the microbiome during substrate colonisation. This study investigated how the bacterial community structure was affected by the introduction of P. ostreatus into the mature substrate. Based on the results obtained, the effect of the presence and absence of this microbiome on P. ostreatus production in an experimental cultivation setup was determined. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and amplicon sequencing revealed a definite succession of the microbiome during substrate colonisation and fruiting body production: a sharp decrease in relative abundance of Thermus spp. and Actinobacteria, and the increasing dominance of Bacillales and Halomonas spp. The introduced experimental cultivation setup proved the protective role of the microbial community against competing fungi without affecting P. ostreatus growth. We could also demonstrate that this effect could be attributed to both living microbes and their secreted metabolites. These findings highlight the importance of bacterial-fungal interactions during mushroom production.


Subject(s)
Pleurotus , Bacteria/genetics , Europe , Pleurotus/genetics , RNA, Ribosomal, 16S/genetics , Triticum
6.
Environ Microbiol Rep ; 13(4): 509-520, 2021 08.
Article in English | MEDLINE | ID: mdl-33951321

ABSTRACT

Grapevine (Vitis vinifera) is a reservoir of fungal endophytes that may affect its growth, health status and grape production. Although there is growing interest in comparing fungal communities of mainly red grape varieties across various factors using only high-throughput sequencing, the small-scale mycobiome variations in geographically close vineyards need further examination. We aimed to characterize the fungal microbiome of the above-ground tissues of V. vinifera cv. Furmint in different plant parts, seasons and sites using culture-dependent and culture-independent methods, and in planta fluorescent microscopic visualization techniques. Samples were collected from four sites of the Tokaj wine region in Mád and two reference sites in Eger, Hungary, across different seasons for 2 years. Fungal endophytes of young and mature leaves, flowers and grape bunches were collected at different phenological stages. Based on each technique, Aureobasidium pullulans, Cladosporium spp. and the complex species Alternaria alternata dominated the community at every site, season and plant organ. We found no significant difference among communities in distinct neighbouring vineyards, nor when compared with the distant reference sites. We can conclude that the different shoot parts of the Furmint grapevines harbour a common core group of fungal community in these regions.


Subject(s)
Mycobiome , Vitis , Wine , Plant Leaves , Seasons , Vitis/microbiology , Wine/microbiology
7.
Sci Rep ; 10(1): 19871, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199773

ABSTRACT

Astatic soda pans of the Pannonian Steppe are unique environments with respect to their multiple extreme physical and chemical characteristics (high daily water temperature fluctuation, high turbidity, alkaline pH, salinity, polyhumic organic carbon concentration, hypertrophic state and special ionic composition). However, little is known about the seasonal dynamics of the bacterial communities inhabiting these lakes and the role of environmental factors that have the main impact on their structure. Therefore, two soda pans were sampled monthly between April 2013 and July 2014 to reveal changes in the planktonic community. By late spring in both years, a sudden shift in the community structure was observed, the previous algae-associated bacterial communities had collapsed, resulting the highest ratio of Actinobacteria within the bacterioplankton (89%, with the dominance of acIII-A1 lineage) ever reported in the literature. Before these peaks, an extremely high abundance (> 10,000 individuum l-1) of microcrustaceans (Moina brachiata and Arctodiaptomus spinosus) was observed. OTU-based statistical approaches showed that in addition to algal blooms and water-level fluctuations, zooplankton densities had the strongest effect on the composition of bacterial communities. In these extreme environments, this implies a surprisingly strong, community-shaping top-down role of microcrustacean grazers.


Subject(s)
Actinobacteria/classification , Cladocera/microbiology , Copepoda/microbiology , Lakes/microbiology , Phytoplankton/microbiology , Zooplankton/microbiology , Actinobacteria/genetics , Actinobacteria/growth & development , Animals , DNA, Bacterial/genetics , Extreme Environments , Grassland , Herbivory , Phylogeny , Phytoplankton/classification , Salinity , Seasons , Sequence Analysis, DNA , Zooplankton/classification
8.
J Chem Ecol ; 46(5-6): 534-543, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32468489

ABSTRACT

Many organisms synthesize secondary metabolites against natural enemies. However, to which environmental factors the production of these metabolites is adjusted to is poorly investigated in animals, especially so in vertebrates. Bufadienolides are steroidal compounds that are present in a wide range of plants and animals and, if present in large quantities, can provide protection against natural enemies, such as pathogens. In a correlative study involving 16 natural populations we investigated how variation in bufadienolide content of larval common toads (Bufo bufo) is associated with the bacterial community structure of their aquatic environment. We also evaluated pond size, macrovegetation cover, and the abundance of predators, conspecifics and other larval amphibians. We measured toxin content of tadpoles using HPLC-MS and determined the number of bufadienolide compounds (NBC) and the total quantity of bufadienolides (TBQ). AICc-based model selection revealed strong relationships of NBC and TBQ with bacterial community structure of the aquatic habitat as well as with the presence of conspecific tadpoles. The observed relationships may have arisen due to adaptation to local bacterial communities, phenotypic plasticity, differential biotransformation of toxin compounds by different bacterial communities, or a combination of these processes. Bacterial groups that contribute to among-population variation in toxin content remain to be pinpointed, but our study suggesting that toxin production may be influenced by the bacterial community of the environment represents an important step towards understanding the ecological and evolutionary processes leading to microbiota-mediated variation in skin toxin profiles of aquatic vertebrates.


Subject(s)
Bacteria , Bufanolides/chemistry , Bufo bufo , Larva/chemistry , Microbiota , Ponds/microbiology , Animals , Bufo bufo/growth & development , Hungary
9.
Mol Biol Rep ; 47(5): 3973-3985, 2020 May.
Article in English | MEDLINE | ID: mdl-32406019

ABSTRACT

Cupriavidus sp. are model organisms for heavy metal(loid) resistance and aromatic compound's degradation studies and these characteristics make them a perfect candidate for biotechnological purposes. Bacterial strain S14E4C (identified as Cupriavidus campinensis) was isolated from a playground by enrichment method in a 0.25 mM containing medium. The analysis revealed that this bacterium is able to tolerate high concentrations of heavy metal(loid)s: Cd up to 19.5 mM, Pb to 9 mM, Hg to 5.5 mM and As to 2 mM in heavy metal(loid) salt containing nutrient medium. The whole genome data and analysis of the type strain of C. campinensis CCUG:44526T have not been available so far, thus here we present the genome sequencing results of strain S14E4C of the same species. Analysis was carried out to identify possible mechanisms for the heavy metal resistance and to map the genetic data of C. campinensis. The annotation pipelines revealed that the total genome of strain S14E4C is 6,375,175 bp length with a GC content of 66.3% and contains 2 plasmids with 295,460 bp (GC content 59.9%) and 50,483 bp (GC content 63%). In total 4460 coding sequences were assigned to known functions and 1508 to hypothetical proteins. Analysis proved that strain S14E4C is having gene clusters such as czc, mer, cus, chr, ars to encode various heavy metal resistance mechanisms that play an important role to survive in extreme environments.


Subject(s)
Cupriavidus/genetics , Metals, Heavy/metabolism , Base Composition/genetics , Base Sequence/genetics , Cupriavidus/metabolism , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Phylogeny , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods
10.
Article in English | MEDLINE | ID: mdl-33734953

ABSTRACT

Three Gram-stain-negative, non-motile, oxidase- and catalase-positive, rod-shaped, black, facultative phototrophic bacterial strains, RG-N-1aT, DMA-N-7a and RA-N-9 were isolated from the water sample from Lake Ferto/Neusiedler See (Hungary). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains form a distinct linage within the family Rhodobacteraceae and their closest relatives are Tabrizicola piscis K13M18T (96.32%) followed by Cypionkella psychrotolerans PAMC 27389T (96.25%). The novel bacterial strains prefer alkaline environments and grow optimally at 23-33 °C in the presence of NaCl (1-2 w/v%). Bacteriochlorophyll a was detected. Cells contained exclusively ubiquinone Q-10. The major cellular fatty acids were C18 : 1ω7c, C19 : 1iso ω5c, C18 : 0 3-OH and C18 : 1ω7c 11-methyl. The polar lipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid and four unidentified lipids. The assembled draft genome of RG-N-1aT had 33 contigs with N50 values 315 027 nt, 96× genome coverage, total length of 4 326 551 bp and a DNA G+C content of 64.9%. Genome-based calculations (genome-to-genome distance and DNA G+C percentage) and pairwise amino acid identity (AAI <73.5%) indicate that RG-N-1aT represents a novel genus. RG-N-1aT (=DSM 108317T=NCAIM B.02647T) is suggested as the type strain of a novel genus and species in the family Rhodobacteraceae, for which the name Fertoeibacter niger gen. nov., sp. nov. is proposed.

11.
FEMS Microbiol Rev ; 42(3): 335-352, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29471481

ABSTRACT

Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.


Subject(s)
Bacterial Physiological Phenomena , Fungi/physiology , Microbial Interactions/physiology , Animals , Ecology
12.
FEMS Microbiol Ecol ; 94(2)2018 02 01.
Article in English | MEDLINE | ID: mdl-29206918

ABSTRACT

Little is known about how various substances from living and decomposing aquatic macrophytes affect the horizontal patterns of planktonic bacterial communities. Study sites were located within Lake Kolon, which is a freshwater marsh and can be characterised by open-water sites and small ponds with different macrovegetation (Phragmites australis, Nymphea alba and Utricularia vulgaris). Our aim was to reveal the impact of these macrophytes on the composition of the planktonic microbial communities using comparative analysis of environmental parameters, microscopy and pyrosequencing data. Bacterial 16S rRNA gene sequences were dominated by members of phyla Proteobacteria (36%-72%), Bacteroidetes (12%-33%) and Actinobacteria (5%-26%), but in the anoxic sample the ratio of Chlorobi (54%) was also remarkable. In the phytoplankton community, Cryptomonas sp., Dinobryon divergens, Euglena acus and chrysoflagellates had the highest proportion. Despite the similarities in most of the measured environmental parameters, the inner ponds had different bacterial and algal communities, suggesting that the presence and quality of macrophytes directly and indirectly controlled the composition of microbial plankton.


Subject(s)
Lakes/microbiology , Lakes/parasitology , Phytoplankton/microbiology , Phytoplankton/parasitology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Chlorobi/classification , Chlorobi/genetics , Chlorobi/isolation & purification , Cryptophyta/classification , Cryptophyta/genetics , Cryptophyta/isolation & purification , Euglena/classification , Euglena/genetics , Euglena/isolation & purification , Fresh Water/microbiology , Fresh Water/parasitology , Magnoliopsida/growth & development , Microbiota , Nymphaea/growth & development , Phylogeny , Phytoplankton/classification , Poaceae/growth & development , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics
13.
J Pharm Biomed Anal ; 128: 236-246, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27281579

ABSTRACT

This work demonstrates how nonlinearity in Raman spectrometry of pharmaceuticals can be handled and accurate quantification can be achieved by applying certain chemometric methods including variable selection. Such approach proved to be successful even if the component spectra are very similar or spectral intensities of the constituents are strongly different. The relevant examples are: blends of two crystalline forms of carvedilol ("CRYST-PM" blend) and a three-component pharmaceutical model system ("PHARM-TM" blend). The widely used classical least squares regression (CLS) and partial least squares regression (PLS) quantification methods provided relatively poor root mean squared error of prediction (RMSEP) values: approximately 2-4% and 4-10% for CRYST-PM and PHARM-TM respectively. The residual plots of these models indicated the nonlinearity of the preprocessed data sets. More accurate quantitative results could be achieved with properly applied variable selection methods. It was observed that variable selection methods discarded the most intensive bands while less intensive ones were retained as the most informative spectral ranges. As a result not only the accuracy of concentration determination was enhanced, but the linearity of models was improved as well. This indicated that nonlinearity occurred especially at the intensive spectral bands. Other methods developed for handling nonlinearity were also capable of adapting to the spectral nature of both data sets. The RMSEP could be decreased this way to 1% in CRYST-PM and 3-6% in PHARM-TM. Raman maps with accurate real concentrations could be prepared this way. All quantitative models were compared by the non-parametric sum of ranking differences (SRD) method, which also proved that models based on variable selection or nonlinear methods provide better quantification.


Subject(s)
Pharmaceutical Preparations/analysis , Spectrum Analysis, Raman/methods , Calibration , Carbazoles/chemistry , Carvedilol , Drug Combinations , Least-Squares Analysis , Nonlinear Dynamics , Propanolamines/chemistry , Reference Standards , Tablets
14.
Fungal Biol ; 119(12): 1354-1363, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26615756

ABSTRACT

Oyster mushroom (Pleurotus ostreatus) lignocellulolytic enzyme activity pattern and variation was investigated in a large-scale facility from spawning until the end of the second flush. In the first cultivation cycle laccase production reached its peak during vegetative growth stage, while manganese-peroxidase showed the highest activity during fruiting body induction. Cellulose and hemicellulose degrading enzymes had maximal activity at the beginning of flush and harvest stage. The enzyme activities showed similar tendencies among five different mushroom substrate blocks representing a production house. The spatial variability analysis of enzyme activities pointed out the within substrate block heterogeneity as the main source if variation. This result was confirmed by Combined Cluster and Discriminant Analysis (CCDA) method showing minimal among block heterogeneity considering the whole investigation period; furthermore in the first cultivation cycle all blocks were grouped into one cluster.


Subject(s)
Fungal Proteins/metabolism , Laccase/metabolism , Pleurotus/enzymology , Cellulose/metabolism , Culture Media/metabolism , Fungal Proteins/genetics , Laccase/genetics , Lignin/metabolism , Pleurotus/genetics , Pleurotus/growth & development
15.
J Pharm Biomed Anal ; 107: 318-24, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25637818

ABSTRACT

This paper reports the application of surface enhanced Raman chemical imaging (SER-CI) as a potentially non-destructive quantitative analytical method for the investigation of model pharmaceutical formulations containing the active pharmaceutical ingredient (API) in low concentrations (0.5-2%). The application of chemometric techniques for processing the spectra enables the determination of API distribution in products of different concentrations. In addition, the applied multivariate curve resolution can be proper method to identify unexpected contaminants in illicit drugs. The drastic Raman signal enhancement in the presence of silver nanoparticles provides significantly improved calibration accuracy and, at the same time, radically decreased image acquisition time compared to conventional Raman chemical imaging.


Subject(s)
Pharmaceutical Preparations/chemistry , Chemistry, Pharmaceutical/methods , Multivariate Analysis , Nanoparticles/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods
16.
J Pharm Biomed Anal ; 98: 166-77, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24929869

ABSTRACT

Raman spectrometry was utilized to estimate degraded drug percentage, residual drug crystallinity and glass-transition temperature in the case of melt-extruded pharmaceutical products. Tight correlation was shown between the results obtained by confocal Raman mapping and transmission Raman spectrometry, a PAT-compatible potential in-line analytical tool. Immediate-release spironolactone-Eudragit E solid dispersions were the model system, owing to the achievable amorphization and the heat-sensitivity of the drug compound. The deep investigation of the relationship between process parameters, residual drug crystallinity and degradation was performed using statistical tools and a factorial experimental design defining 54 different circumstances for the preparation of solid dispersions. From the examined factors, drug content (10, 20 and 30%), temperature (110, 130 and 150°C) and residence time (2.75, 11.00 and 24.75min) were found to have significant and considerable effect. By forming physically stable homogeneous dispersions, the originally very slow dissolution of the lipophilic and poorly water-soluble spironolactone was reasonably improved, making 3minute release possible in acidic medium.


Subject(s)
Polymethacrylic Acids/chemistry , Spironolactone/chemistry , Drug Carriers/chemistry , Drug Compounding/methods , Hot Temperature , Solubility , Spectrum Analysis, Raman/methods , Transition Temperature , Water/chemistry
17.
Syst Appl Microbiol ; 36(5): 339-50, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23706914

ABSTRACT

Aromatic hydrocarbons including benzene, toluene, ethyl-benzene, and xylene (BTEX) are frequent contaminants of groundwater, the major drinking water resource. Bioremediation is the only sustainable process to clean up these environments. Microbial degradation of BTEX compounds occurs rapidly under aerobic conditions but, in subsurface environments, the availability of oxygen is commonly restricted. Even so, the microaerobic degradation of aromatic compounds is still poorly understood. Hence, the dynamics of a bacterial community and the expression of meta-cleavage dioxygenase genes, with particular emphasis on subfamily I.2.C extradiol dioxygenase genes, were assessed over a 13-month period in a hypoxic, aromatic hydrocarbon-contaminated shallow groundwater by using sequence-aided terminal-restriction fragment length polymorphism (T-RFLP) and single-nucleotide primer extension (SNuPE), respectively. The bacterial 16S rRNA fingerprinting revealed the predominance of members of Rhodoferax, Azoarcus, Pseudomonas, and unknown bacteria related to Rhodocyclaceae. It was observed that mRNA transcripts of subfamily I.2.C extradiol dioxygenase genes were detected constantly over the monitoring period, and the detected sequences clustered into six distinct clusters. In order to reveal changes in the expression of these clusters over the monitoring period a SNuPE assay was developed. This quasi fingerprinting of functional gene expression provided the opportunity to link the investigated function to specific microbial populations. The results obtained can improve our understanding of aromatic hydrocarbon degradation under oxygen limitation and may benefit bioremediation research by demonstrating the usefulness of SNuPE for the monitoring of microbial populations involved in degradation process.


Subject(s)
Bacteria/classification , Bacteria/enzymology , Gene Expression Profiling , Groundwater/microbiology , Hydrocarbons, Aromatic/metabolism , Oxygenases/biosynthesis , Bacteria/genetics , Bacteria/metabolism , Cluster Analysis , DNA Fingerprinting , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Oxygenases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
18.
World J Microbiol Biotechnol ; 29(11): 1989-2002, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23632908

ABSTRACT

Nowadays, because of substantial use of petroleum-derived fuels the number and extension of hydrocarbon polluted terrestrial ecosystems is in growth worldwide. In remediation of aforementioned sites bioremediation still tends to be an innovative, environmentally attractive technology. Although huge amount of information is available concerning the hydrocarbon degradation potential of cultivable hydrocarbonoclastic bacteria little is known about the in situ long-term effects of petroleum derived compounds on the structure of soil microbiota. Therefore, in this study our aim was to determine the long-term impact of total petroleum hydrocarbons (TPHs), volatile petroleum hydrocarbons (VPHs), total alkyl benzenes (TABs) as well as of polycyclic aromatic hydrocarbons (PAHs) on the structure of bacterial communities of four different contaminated soil samples. Our results indicated that a very high amount of TPH affected positively the diversity of hydrocarbonoclastic bacteria. This finding was supported by the occurrence of representatives of the α-, ß-, γ-Proteobacteria, Actinobacteria, Flavobacteriia and Bacilli classes. High concentration of VPHs and TABs contributed to the predominance of actinobacterial isolates. In PAH impacted samples the concentration of PAHs negatively correlated with the diversity of bacterial species. Heavily PAH polluted soil samples were mainly inhabited by the representatives of the ß-, γ-Proteobacteria (overwhelming dominance of Pseudomonas sp.) and Actinobacteria.


Subject(s)
Actinobacteria/isolation & purification , Hydrocarbons/chemistry , Microbiota , Petroleum , Proteobacteria/isolation & purification , Soil Microbiology , Soil Pollutants/chemistry , Actinobacteria/genetics , Benzene Derivatives/chemistry , Benzene Derivatives/metabolism , Biodegradation, Environmental , Biodiversity , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Ecosystem , Evolution, Molecular , Hydrocarbons/metabolism , Petroleum/metabolism , Phylogeny , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Species Specificity
19.
Macromol Biosci ; 13(5): 633-40, 2013 May.
Article in English | MEDLINE | ID: mdl-23512318

ABSTRACT

Synthesis and characterization of a pH- and redox-sensitive hydrogel of poly(aspartic acid) are reported. Reversible gelation and dissolution are achieved both in dimethylformamide and in aqueous medium via a thiol-disulphide interconversion in the side chain of the polymers. Structural changes are confirmed by Raman microscopy and rheological measurements. Injectable aqueous solutions of thiolated poly(aspartic acid) can be converted into mechanically stable gels by oxidation, which can be useful for drug encapsulation and targeted delivery. Reduction-facilitated release of an entrapped drug from disulphide cross-linked hydrogels is studied.


Subject(s)
Cysteamine/chemistry , Peptides/chemistry , Phase Transition , Aspartic Acid/analogs & derivatives , Aspartic Acid/chemical synthesis , Aspartic Acid/chemistry , Benzophenoneidum/pharmacology , Cross-Linking Reagents/chemistry , Disulfides/chemistry , Drug Compounding , Hydrogels/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Peptides/chemical synthesis , Phase Transition/drug effects , Rheology/drug effects , Spectrum Analysis, Raman
20.
AAPS PharmSciTech ; 14(1): 435-44, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23378252

ABSTRACT

Magnesium stearate (MS) is the most commonly used lubricant in pharmaceutical industry. During blending, MS particles form a thin layer on the surfaces of the excipient and drug particles prohibiting the bonding from forming between the particles. This hydrophobic layer decreases the tensile strength of tablets and prevents water from penetrating into the tablet restraining the disintegration and dissolution of the tablets. Although overlubrication of the powder mass during MS blending is a well-known problem, the lubricant distribution in tablets has traditionally been challenging to measure. There is currently no adequate analytical method to investigate this phenomenon. In this study, the distribution of MS in microcrystalline cellulose (MCC) tablets was investigated using three different blending scales. The crushing strength of the tablets was used as a secondary response, as its decrease is known to result from the overlubrication. In addition, coating of the MCC particles by MS in intact tablets was detected using Raman microscopic mapping. MS blending was more efficient in larger scales. Raman imaging was successfully applied to characterize MS distribution in MCC tablets despite low concentration of MS. The Raman method can provide highly valuable visual information about the proceeding of the MS blending process. However, the measuring set-up has to be carefully planned to establish reliable and reproducible results.


Subject(s)
Stearic Acids/analysis , Tablets , Crystallization , Microscopy, Electron, Scanning , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...