Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
1.
J Virol ; : e0052424, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757972

ABSTRACT

Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting GALNT1 or C1GALT1C1 as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.

2.
Nat Commun ; 15(1): 986, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307857

ABSTRACT

Microalgae are a renewable and promising biomass for large-scale biofuel, food and nutrient production. However, their efficient exploitation depends on our knowledge of the cell wall composition and organization as it can limit access to high-value molecules. Here we provide an atomic-level model of the non-crystalline and water-insoluble glycoprotein-rich cell wall of Chlamydomonas reinhardtii. Using in situ solid-state and sensitivity-enhanced nuclear magnetic resonance, we reveal unprecedented details on the protein and carbohydrate composition and their nanoscale heterogeneity, as well as the presence of spatially segregated protein- and glycan-rich regions with different dynamics and hydration levels. We show that mannose-rich lower-molecular-weight proteins likely contribute to the cell wall cohesion by binding to high-molecular weight protein components, and that water provides plasticity to the cell-wall architecture. The structural insight exemplifies strategies used by nature to form cell walls devoid of cellulose or other glycan polymers.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolism , Glycoproteins/metabolism , Cell Wall/metabolism , Cellulose/metabolism , Water/metabolism
3.
Anal Chem ; 95(47): 17328-17336, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37956981

ABSTRACT

Cell surface glycans are essential for establishing cell communication, adhesion, and migration. However, it remains challenging to obtain cell surface-specific information about glycoconjugate structures. Acquiring this information is essential for unraveling the functional role of glycans and for exploiting them as clinical targets. To specifically analyze the N-glycoprotein forms expressed at the cell surface, we developed a C18 liquid chromatography (LC)-mass spectrometry (MS)-based glycoproteomics method in combination with highly specific cell surface protein labeling and enrichment using a biotin label. The surface-specificity of the method was validated by MS-based proteomics of subcellular component marker proteins. Using the human keratinocytes N/TERT-1 as a model system, we identified and quantified the glycosylation of hundreds of cell surface N-glycosylation sites. This approach allowed us to study the glycoforms present at the functional relevant cell surface, omitting immaturely glycosylated proteins present in the secretory pathway. Interestingly, the different stages of N-glycan processing at individual sites displayed at the cell surface were found to correlate with their accessibility for ER-residing processing enzymes, as investigated through molecular dynamics simulations. Using the new approach, we compared N-glycosylation sites of proteins expressed on the cell surface to their counterparts in a total cell lysate, showing profound differences in glycosylation between the subcellular components and indicating the relevance of the method for future studies in understanding contextual glycan functions.


Subject(s)
Glycoproteins , Polysaccharides , Humans , Glycosylation , Glycoproteins/chemistry , Mass Spectrometry/methods , Polysaccharides/chemistry
4.
iScience ; 26(7): 106984, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37534161

ABSTRACT

Galectins are a group of carbohydrate-binding proteins with a presumed immunomodulatory role and an elusive function on antigen-presenting cells. Here we analyzed the expression of galectin-1 and found upregulation of galectin-1 in the extracellular matrix across multiple tumors. Performing an in-depth and dynamic proteomic and phosphoproteomic analysis of human macrophages stimulated with galectin-1, we show that galectin-1 induces a tumor-associated macrophage phenotype with increased expression of key immune checkpoint protein programmed cell death 1 ligand 1 (PD-L1/CD274) and immunomodulator indoleamine 2,3-dioxygenase-1 (IDO1). Galectin-1 induced IDO1 and its active metabolite kynurenine in a dose-dependent manner through JAK/STAT signaling. In a 3D organotypic tissue model system equipped with genetically engineered tumorigenic epithelial cells, we analyzed the cellular source of galectin-1 in the extracellular matrix and found that galectin-1 is derived from epithelial and stromal cells. Our results highlight the potential of targeting galectin-1 in immunotherapeutic treatment of human cancers.

5.
Proc Natl Acad Sci U S A ; 120(21): e2302584120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186866

ABSTRACT

Mutations in the TMEM260 gene cause structural heart defects and renal anomalies syndrome, but the function of the encoded protein remains unknown. We previously reported wide occurrence of O-mannose glycans on extracellular immunoglobulin, plexin, transcription factor (IPT) domains found in the hepatocyte growth factor receptor (cMET), macrophage-stimulating protein receptor (RON), and plexin receptors, and further demonstrated that two known protein O-mannosylation systems orchestrated by the POMT1/2 and transmembrane and tetratricopeptide repeat-containing proteins 1-4 gene families were not required for glycosylation of these IPT domains. Here, we report that the TMEM260 gene encodes an ER-located protein O-mannosyltransferase that selectively glycosylates IPT domains. We demonstrate that disease-causing TMEM260 mutations impair O-mannosylation of IPT domains and that TMEM260 knockout in cells results in receptor maturation defects and abnormal growth of 3D cell models. Thus, our study identifies the third protein-specific O-mannosylation pathway in mammals and demonstrates that O-mannosylation of IPT domains serves critical functions during epithelial morphogenesis. Our findings add a new glycosylation pathway and gene to a growing group of congenital disorders of glycosylation.


Subject(s)
Mannose , Mannosyltransferases , Animals , Glycosylation , Mammals/metabolism , Mannose/metabolism , Mannosyltransferases/genetics , Mannosyltransferases/metabolism
6.
Front Bioeng Biotechnol ; 11: 1128371, 2023.
Article in English | MEDLINE | ID: mdl-36911201

ABSTRACT

Currently available enzyme replacement therapies for lysosomal storage diseases are limited in their effectiveness due in part to short circulation times and suboptimal biodistribution of the therapeutic enzymes. We previously engineered Chinese hamster ovary (CHO) cells to produce α-galactosidase A (GLA) with various N-glycan structures and demonstrated that elimination of mannose-6-phosphate (M6P) and conversion to homogeneous sialylated N-glycans prolonged circulation time and improved biodistribution of the enzyme following a single-dose infusion into Fabry mice. Here, we confirmed these findings using repeated infusions of the glycoengineered GLA into Fabry mice and further tested whether this glycoengineering approach, Long-Acting-GlycoDesign (LAGD), could be implemented on other lysosomal enzymes. LAGD-engineered CHO cells stably expressing a panel of lysosomal enzymes [aspartylglucosamine (AGA), beta-glucuronidase (GUSB), cathepsin D (CTSD), tripeptidyl peptidase (TPP1), alpha-glucosidase (GAA) or iduronate 2-sulfatase (IDS)] successfully converted all M6P-containing N-glycans to complex sialylated N-glycans. The resulting homogenous glycodesigns enabled glycoprotein profiling by native mass spectrometry. Notably, LAGD extended the plasma half-life of all three enzymes tested (GLA, GUSB, AGA) in wildtype mice. LAGD may be widely applicable to lysosomal replacement enzymes to improve their circulatory stability and therapeutic efficacy.

7.
Nat Commun ; 14(1): 948, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36804936

ABSTRACT

Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Glycosylation , SARS-CoV-2/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism
8.
Sci Signal ; 15(761): eabo2206, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36413597

ABSTRACT

Transforming growth factor-ß (TGF-ß) signaling regulates various aspects of cell growth and differentiation and is often dysregulated in human cancers. We combined genetic engineering of a human organotypic three-dimensional (3D) skin model with global quantitative proteomics and phosphoproteomics to dissect the importance of essential components of the TGF-ß signaling pathway, including the ligands TGF-ß1, TGF-ß2, and TGF-ß3, the receptor TGF-ßRII, and the intracellular effector SMAD4. Consistent with the antiproliferative effects of TGF-ß signaling, the loss of TGF-ß1 or SMAD4 promoted cell cycling and delayed epidermal differentiation. The loss of TGF-ßRII, which abrogates both SMAD4-dependent and SMAD4-independent downstream signaling, more strongly affected cell proliferation and differentiation than did loss of SMAD4, and it induced invasive growth. TGF-ßRII knockout reduced cell-matrix interactions, and the production of matrix proteins increased the production of cancer-associated cell-cell adhesion proteins and proinflammatory mediators and increased mitogen-activated protein kinase (MAPK) signaling. Inhibiting the activation of the ERK and p38 MAPK pathways blocked the development of the invasive phenotype upon the loss of TGF-ßRII. This study provides a framework for exploring TGF-ß signaling pathways in human epithelial tissue homeostasis and transformation using genetic engineering, 3D tissue models, and high-throughput quantitative proteomics and phosphoproteomics.


Subject(s)
Signal Transduction , Transforming Growth Factor beta1 , Humans , Cell Differentiation , Cell Proliferation , Skin
9.
Front Immunol ; 13: 987151, 2022.
Article in English | MEDLINE | ID: mdl-36189205

ABSTRACT

Immunoglobulins G (IgG) and their Fc gamma receptors (FcγRs) play important roles in our immune system. The conserved N-glycan in the Fc region of IgG1 impacts interaction of IgG with FcγRs and the resulting effector functions, which has led to the design of antibody therapeutics with greatly improved antibody-dependent cell cytotoxicity (ADCC) activities. Studies have suggested that also N-glycosylation of the FcγRIII affects receptor interactions with IgG, but detailed studies of the interaction of IgG1 and FcγRIIIa with distinct N-glycans have been hindered by the natural heterogeneity in N-glycosylation. In this study, we employed comprehensive genetic engineering of the N-glycosylation capacities in mammalian cell lines to express IgG1 and FcγRIIIa with different N-glycan structures to more generally explore the role of N-glycosylation in IgG1:FcγRIIIa binding interactions. We included FcγRIIIa variants of both the 158F and 158V allotypes and investigated the key N-glycan features that affected binding affinity. Our study confirms that afucosylated IgG1 has the highest binding affinity to oligomannose FcγRIIIa, a glycan structure commonly found on Asn162 on FcγRIIIa expressed by NK cells but not monocytes or recombinantly expressed FcγRIIIa.


Subject(s)
Immunoglobulin G , Receptors, IgG , Animals , Antibody-Dependent Cell Cytotoxicity , Glycosylation , Mammals , Polysaccharides/metabolism , Receptors, IgG/metabolism
10.
Nat Commun ; 13(1): 6257, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36270990

ABSTRACT

Mucin-type-O-glycosylation on proteins is integrally involved in human health and disease and is coordinated by an enzyme family of 20 N-acetylgalactosaminyltransferases (GalNAc-Ts). Detailed knowledge on the biological effects of site-specific O-glycosylation is limited due to lack of information on specific glycosylation enzyme activities and O-glycosylation site-occupancies. Here we present a systematic analysis of the isoform-specific targets of all GalNAc-Ts expressed within a tissue-forming human skin cell line, and demonstrate biologically significant effects of O-glycan initiation on epithelial formation. We find over 300 unique glycosylation sites across a diverse set of proteins specifically regulated by one of the GalNAc-T isoforms, consistent with their impact on the tissue phenotypes. Notably, we discover a high variability in the O-glycosylation site-occupancy of 70 glycosylated regions of secreted proteins. These findings revisit the relevance of individual O-glycosylation sites in the proteome, and provide an approach to establish which sites drive biological functions.


Subject(s)
N-Acetylgalactosaminyltransferases , Proteome , Humans , Glycosylation , Proteome/metabolism , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Cell Line , Mucins/metabolism , Polysaccharides
11.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955861

ABSTRACT

Prader−Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11−q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic−pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.


Subject(s)
Prader-Willi Syndrome , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/metabolism , Disease Models, Animal , Exons , Genomic Imprinting , Humans , Mice , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/metabolism , Proprotein Convertase 1/genetics , Proprotein Convertase 1/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism
12.
Anal Chem ; 94(20): 7329-7338, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35549177

ABSTRACT

Mass spectrometry (MS) easily detects C-mannosylated peptides from purified proteins but not from complex biological samples. Enrichment of specific glycopeptides by lectin affinity prior to MS analysis has been widely applied to support glycopeptide identification but was until now not available for C-mannosylated peptides. Here, we used the α-mannose-specific Burkholderia cenocepacia lectin A (BC2L-A) and show that, in addition to its previously demonstrated high-mannose N-glycan binding capability, this lectin is able to retain C- and O-mannosylated peptides. Besides testing binding abilities to standard peptides, we applied BC2L-A affinity to enrich C-mannosylated peptides from complex samples of tryptic digests of HEK293 and MCF10A whole cell extracts, which led to the identification of novel C-mannosylation sites. In conclusion, BC2L-A enabled specific enrichment of C- and O-mannosylated peptides and might have superior properties over other mannose binding lectins for this purpose.


Subject(s)
Burkholderia cenocepacia , Mannose , Burkholderia cenocepacia/chemistry , Burkholderia cenocepacia/metabolism , Glycopeptides/metabolism , Glycosylation , HEK293 Cells , Humans , Lectins/chemistry , Mannose/chemistry
13.
JACS Au ; 2(3): 631-645, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35373202

ABSTRACT

The large family of polypeptide GalNAc-transferases (GalNAc-Ts) controls with precision how GalNAc O-glycans are added in the tandem repeat regions of mucins (e.g., MUC1). However, the structural features behind the creation of well-defined and clustered patterns of O-glycans in mucins are poorly understood. In this context, herein, we disclose the full process of MUC1 O-glycosylation by GalNAc-T2/T3/T4 isoforms by NMR spectroscopy assisted by molecular modeling protocols. By using MUC1, with four tandem repeat domains as a substrate, we confirmed the glycosylation preferences of different GalNAc-Ts isoforms and highlighted the importance of the lectin domain in the glycosylation site selection after the addition of the first GalNAc residue. In a glycosylated substrate, with yet multiple acceptor sites, the lectin domain contributes to orientate acceptor sites to the catalytic domain. Our experiments suggest that during this process, neighboring tandem repeats are critical for further glycosylation of acceptor sites by GalNAc-T2/T4 in a lectin-assisted manner. Our studies also show local conformational changes in the peptide backbone during incorporation of GalNAc residues, which might explain GalNAc-T2/T3/T4 fine specificities toward the MUC1 substrate. Interestingly, we postulate that a specific salt-bridge and the inverse γ-turn conformation of the PDTRP sequence in MUC1 are the main structural motifs behind the GalNAc-T4 specificity toward this region. In addition, in-cell analysis shows that the GalNAc-T4 isoform is the only isoform glycosylating the Thr of the immunogenic epitope PDTRP in vivo, which highlights the relevance of GalNAc-T4 in the glycosylation of this epitope. Finally, the NMR methodology established herein can be extended to other glycosyltransferases, such as C1GalT1 and ST6GalNAc-I, to determine the specificity toward complex mucin acceptor substrates.

14.
J Biol Chem ; 298(4): 101784, 2022 04.
Article in English | MEDLINE | ID: mdl-35247390

ABSTRACT

Mucins and glycoproteins with mucin-like regions contain densely O-glycosylated domains often found in tandem repeat (TR) sequences. These O-glycodomains have traditionally been difficult to characterize because of their resistance to proteolytic digestion, and knowledge of the precise positions of O-glycans is particularly limited for these regions. Here, we took advantage of a recently developed glycoengineered cell-based platform for the display and production of mucin TR reporters with custom-designed O-glycosylation to characterize O-glycodomains derived from mucins and mucin-like glycoproteins. We combined intact mass and bottom-up site-specific analysis for mapping O-glycosites in the mucins, MUC2, MUC20, MUC21, protein P-selectin-glycoprotein ligand 1, and proteoglycan syndecan-3. We found that all the potential Ser/Thr positions in these O-glycodomains were O-glycosylated when expressed in human embryonic kidney 293 SimpleCells (Tn-glycoform). Interestingly, we found that all potential Ser/Thr O-glycosites in TRs derived from secreted mucins and most glycosites from transmembrane mucins were almost fully occupied, whereas TRs from a subset of transmembrane mucins were less efficiently processed. We further used the mucin TR reporters to characterize cleavage sites of glycoproteases StcE (secreted protease of C1 esterase inhibitor from EHEC) and BT4244, revealing more restricted substrate specificities than previously reported. Finally, we conducted a bottom-up analysis of isolated ovine submaxillary mucin, which supported our findings that mucin TRs in general are efficiently O-glycosylated at all potential glycosites. This study provides insight into O-glycosylation of mucins and mucin-like domains, and the strategies developed open the field for wider analysis of native mucins.


Subject(s)
Mucins , Amino Acid Sequence , Animals , Glycosylation , HEK293 Cells , Humans , Mucins/metabolism , Polysaccharides/genetics , Protein Domains , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sheep
15.
Anal Chem ; 94(10): 4343-4351, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35245040

ABSTRACT

O-Glycosylation is an omnipresent modification of the human proteome affecting many cellular functions, including protein cleavage, protein folding, and cellular signaling, interactions, and trafficking. The functions are governed by differentially regulated O-glycan types and terminal structures. It is therefore essential to develop analytical methods that facilitate the annotation of O-glycans in biological material. While various successful strategies for the in-depth profiling of released O-glycans have been reported, these methods are often limitedly accessible to the nonspecialist or challenged by the high abundance of O-glycan structural isomers. Here, we developed a high-throughput sample preparation approach for the nonreductive release and characterization of O-glycans from human cell material. Reducing-end labeling allowed efficient isomer separation and detection using C18 nanoliquid chromatography coupled to Orbitrap mass spectrometry. Using the method in combination with a library of genetically glycoengineered cells displaying defined O-glycan types and structures, we were able to annotate individual O-glycan structural isomers from a complex mixture. Applying the method in a model system of human keratinocytes, we found a wide variety of O-glycan structures, including O-fucose, O-glucose, O-GlcNAc, and O-GalNAc glycosylation, with the latter carrying both elongated core1 and core2 structures and varying numbers of fucoses and sialic acids. The method, including the now well-characterized standards, provides the opportunity to study glycomic changes in human tissue and disease models using rather mainstream analytical equipment.


Subject(s)
Chromatography , Polysaccharides , Glycosylation , Humans , Isomerism , Mass Spectrometry , Polysaccharides/chemistry
16.
Cells ; 11(3)2022 02 02.
Article in English | MEDLINE | ID: mdl-35159331

ABSTRACT

DNA mismatch repair (MMR) is a highly conserved pathway that corrects both base-base mispairs and insertion-deletion loops (IDLs) generated during DNA replication. Defects in MMR have been linked to carcinogenesis and drug resistance. However, the regulation of MMR is poorly understood. Interestingly, CNOT6 is one of four deadenylase subunits in the conserved CCR4-NOT complex and it targets poly(A) tails of mRNAs for degradation. CNOT6 is overexpressed in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) and androgen-independent prostate cancer cells, which suggests that an altered expression of CNOT6 may play a role in tumorigenesis. Here, we report that a depletion of CNOT6 sensitizes human U2OS cells to N-methyl-N'nitro-N-nitrosoguanidine (MNNG) and leads to enhanced apoptosis. We also demonstrate that the depletion of CNOT6 upregulates MMR and decreases the mutation frequency in MMR-proficient cells. Furthermore, the depletion of CNOT6 increases the stability of mRNA transcripts from MMR genes, leading to the increased expression of MMR proteins. Our work provides insight into a novel CNOT6-dependent mechanism for regulating MMR.


Subject(s)
DNA Mismatch Repair , DNA Replication , Apoptosis/genetics , DNA Mismatch Repair/genetics , Humans , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
J Biol Chem ; 298(2): 101382, 2022 02.
Article in English | MEDLINE | ID: mdl-34954141

ABSTRACT

The human genome contains at least 35 genes that encode Golgi sulfotransferases that function in the secretory pathway, where they are involved in decorating glycosaminoglycans, glycolipids, and glycoproteins with sulfate groups. Although a number of important interactions by proteins such as selectins, galectins, and sialic acid-binding immunoglobulin-like lectins are thought to mainly rely on sulfated O-glycans, our insight into the sulfotransferases that modify these glycoproteins, and in particular GalNAc-type O-glycoproteins, is limited. Moreover, sulfated mucins appear to accumulate in respiratory diseases, arthritis, and cancer. To explore further the genetic and biosynthetic regulation of sulfated O-glycans, here we expanded a cell-based glycan array in the human embryonic kidney 293 (HEK293) cell line with sulfation capacities. We stably engineered O-glycan sulfation capacities in HEK293 cells by site-directed knockin of sulfotransferase genes in combination with knockout of genes to eliminate endogenous O-glycan branching (core2 synthase gene GCNT1) and/or sialylation capacities in order to provide simplified substrates (core1 Galß1-3GalNAcα1-O-Ser/Thr) for the introduced sulfotransferases. Expression of the galactose 3-O-sulfotransferase 2 in HEK293 cells resulted in sulfation of core1 and core2 O-glycans, whereas expression of galactose 3-O-sulfotransferase 4 resulted in sulfation of core1 only. We used the engineered cell library to dissect the binding specificity of galectin-4 and confirmed binding to the 3-O-sulfo-core1 O-glycan. This is a first step toward expanding the emerging cell-based glycan arrays with the important sulfation modification for display and production of glycoconjugates with sulfated O-glycans.


Subject(s)
Mucins , Sulfates , Glycoproteins/metabolism , HEK293 Cells , Humans , Kidney/metabolism , Mucins/metabolism , Polysaccharides/metabolism , Sulfates/metabolism , Sulfotransferases/metabolism
19.
Sci Adv ; 7(52): eabl6026, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34936441

ABSTRACT

Heparan sulfate (HS) polysaccharides are master regulators of diverse biological processes via sulfated motifs that can recruit specific proteins. 3-O-sulfation of HS/heparin is crucial for anticoagulant activity, but despite emerging evidence for roles in many other functions, a lack of tools for deciphering structure-function relationships has hampered advances. Here, we describe an approach integrating synthesis of 3-O-sulfated standards, comprehensive HS disaccharide profiling, and cell engineering to address this deficiency. Its application revealed previously unseen differences in 3-O-sulfated profiles of clinical heparins and 3-O-sulfotransferase (HS3ST)­specific variations in cell surface HS profiles. The latter correlated with functional differences in anticoagulant activity and binding to platelet factor 4 (PF4), which underlies heparin-induced thrombocytopenia, a known side effect of heparin. Unexpectedly, cells expressing the HS3ST4 isoenzyme generated HS with potent anticoagulant activity but weak PF4 binding. The data provide new insights into 3-O-sulfate structure-function and demonstrate proof of concept for tailored cell-based synthesis of next-generation heparins.

20.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Article in English | MEDLINE | ID: mdl-34725484

ABSTRACT

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Subject(s)
Glycopeptides/blood , Glycoproteins/blood , Informatics/methods , Proteome/analysis , Proteomics/methods , Research Personnel/statistics & numerical data , Software , Glycosylation , Humans , Proteome/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...