Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
ACS Macro Lett ; 12(12): 1659-1664, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37991797

ABSTRACT

Employing small-angle X-ray scattering (SAXS), we explore the conditions under which assembly of gold nanoparticles (AuNPs) grafted with the thermosensitive polymer poly(N-isopropylacrylamide) (PNIPAM) emerges. We find that short-range order assembly emerges by combining the addition of electrolytes or polyelectrolytes with raising the temperature of the suspensions above the lower-critical solution temperature (LCST) of PNIPAM. Our results show that the longer the PNIPAM chain is, the better organization in the assembled clusters. Interestingly, without added electrolytes, there is no evidence of AuNPs assembly as a function of temperature, although untethered PNIPAM is known to undergo a coil-to-globule transition above its LCST. This study demonstrates another approach to assembling potential thermosensitive nanostructures for devices by leveraging the unique properties of PNIPAM.

2.
J Colloid Interface Sci ; 650(Pt B): 1941-1948, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37517193

ABSTRACT

HYPOTHESIS: Introducing charged terminal groups to polymers that graft nanoparticles enable Coulombic control over their assembly by tuning the pH and salinity of their aqueous suspensions. EXPERIMENTS: Gold nanoparticles (AuNPs) are grafted with poly (ethylene glycol) (PEG) terminated with (charge-neutral), (negatively charged) or groups (positively charged), and characterized with dynamic light scattering, ζ-potential, and thermal gravimetric analysis. Liquid surface X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS) are used to determine the density profile and in-plane structure of the AuNPs assembly at the aqueous surface. FINDINGS: Assembly of PEG-AuNPs at the liquid/vapor interface is tunable by adjusting pH or salinity for COOH but less for terminals. The distinct assembly behaviors are attributed to the overall charge of PEG-AuNPs as well as PEG conformation. COOH-PEG corona is more compact than those of the other terminal groups, leading to a crystalline structure with a smaller superlattice. The net charge per particle depends not only on the PEG terminal groups but also on the cation sequestration of PEG and the intrinsic negative charge of the AuNP surface. [1] The closeness to overall charge neutrality, and hydrogen bonding in play, brought by -PEG, drive -PEG-AuNPs to assembly and crystallinity without additives to the suspensions.

3.
Nat Commun ; 14(1): 3408, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296135

ABSTRACT

Control of magnetization and electric polarization is attractive in relation to tailoring materials for data storage and devices such as sensors or antennae. In magnetoelectric materials, these degrees of freedom are closely coupled, allowing polarization to be controlled by a magnetic field, and magnetization by an electric field, but the magnitude of the effect remains a challenge in the case of single-phase magnetoelectrics for applications. We demonstrate that the magnetoelectric properties of the mixed-anisotropy antiferromagnet LiNi1-xFexPO4 are profoundly affected by partial substitution of Ni2+ ions with Fe2+ on the transition metal site. This introduces random site-dependent single-ion anisotropy energies and causes a lowering of the magnetic symmetry of the system. In turn, magnetoelectric couplings that are symmetry-forbidden in the parent compounds, LiNiPO4 and LiFePO4, are unlocked and the dominant coupling is enhanced by almost two orders of magnitude. Our results demonstrate the potential of mixed-anisotropy magnets for tuning magnetoelectric properties.


Subject(s)
Electricity , Magnetic Fields , Anisotropy , Magnets
4.
Adv Mater ; 35(21): e2209951, 2023 May.
Article in English | MEDLINE | ID: mdl-36731511

ABSTRACT

Magnetic defects play an important, but poorly understood, role in magnetic topological insulators (TIs). For example, topological surface transport and bulk magnetic properties are controlled by magnetic defects in Bi2 Se3 -based dilute ferromagnetic (FM) TIs and MnBi2 Te4 (MBT)-based antiferromagnetic (AFM) TIs. Despite its nascent ferromagnetism, the inelastic neutron scattering data show that a fraction of the Mn defects in Sb2 Te3 form strong AFM dimer singlets within a quintuple block. The AFM superexchange coupling occurs via Mn-Te-Mn linear bonds and is identical to the AFM coupling between antisite defects and the FM Mn layer in MBT, establishing common interactions in the two materials classes. It is also found that the FM correlations in (Sb1-x Mnx )2 Te3 are likely driven by magnetic defects in adjacent quintuple blocks across the van der Waals gap. In addition to providing answers to long-standing questions about the evolution of FM order in dilute TI, these results also show that the evolution of global magnetic order from AFM to FM in Sb-substituted MBT is controlled by defect engineering of the intrablock and interblock coupling.

5.
Langmuir ; 38(48): 14615-14622, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36394992

ABSTRACT

Poly(ethylene glycol), PEG, known to inhibit protein adsorption, is widely used on the surfaces of biomedical devices when biofilm formation is undesirable. Poly(desaminotyrosyl-tyrosine ethyl ester carbonate), PDTEC, PC for short, has been a promising coating polymer for insertion devices, and it has been anticipated that PEG plays a similar role if it is copolymerized with PC. Earlier studies show that no fibrinogen (Fg) is adsorbed onto PC polymers with PEG beyond the threshold weight percentage. This is attributed to the phase separation of PEG. Further, iodination of the PC units in the PC polymer, (I2PC), has been found to counteract this Fg-repulsive effect by PEG. In this study, we employ surface-sensitive X-ray techniques to demonstrate the surface affinity of Fg toward the air-water interface, particularly in the presence of self-assembled PC-based film, in which its constituent polymer units are assumed to be much more mobile as a free-standing film. Fg is found to form a Gibbs monolayer with its long axis parallel to the aqueous surface, thus maximizing its interactions with hydrophobic interfaces. It influences the amount of insoluble, surface-bound I2PC likely due to the desorption of the formed Fg-I2PC complex and/or the penetration of Fg onto the I2PC film. The results show that the phase behavior at the liquid-polymer interface shall be taken into account for the surface behavior of bulk polymers surrounded by tissue. The ability of PEG units rearranging into a protein-blocking layer, rather than its mere presence in the polymer, is the key to antifouling characteristics desired for polymeric coating on insertion devices.


Subject(s)
Fibrinogen , Polymers , Adsorption , Polymers/chemistry , Fibrinogen/chemistry , Halogenation , Polyethylene Glycols/chemistry , Water/chemistry , Surface Properties
6.
J Phys Chem Lett ; 13(15): 3424-3430, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35411773

ABSTRACT

We have created two-dimensional (2D) binary superlattices by cocrystallizing gold nanoparticles (AuNPs) of two distinct sizes into √3 × âˆš3 and 2 × 2 complex binary superlattices, derived from the hexagonal structures of the single components. The building blocks of these binary systems are AuNPs that are functionalized with different chain lengths of poly(ethylene glycol) (PEG). The assembly of these functionalized NPs at the air-water interface is driven by the presence of salt, causing PEG-AuNPs to migrate to the aqueous surface and assemble into a crystalline lattice. We have used liquid surface X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS) to examine the assembly and crystallization at the liquid interface.

7.
Langmuir ; 37(33): 10143-10149, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34370486

ABSTRACT

We report on the assembly of gold nanoparticle (AuNPs) superlattices at the liquid/vapor interface and in the bulk of their suspensions. Interparticle distances in the assemblies are achieved on multiple length scales by varying chain lengths of surface grafted AuNPs by polyethylene glycol (PEG) with molecular weights in the range 2000-40,000 Da. Crystal structures and lattice constants in both 2D and 3D assemblies are determined by synchrotron-based surface-sensitive and small-angle X-ray scattering. Assuming knowledge of grafting density, we show that experimentally determined interparticle distances are adequately modeled by spherical brushes close to the θ point (Flory-Huggins parameter, χ≈12) for 2D superlattices at a liquid interface and a nonsolvent (χ = ∞) for the 3D dry superlattices.

8.
J Phys Chem Lett ; 12(5): 1461-1467, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33528263

ABSTRACT

Using synchrotron-based small-angle X-ray scattering techniques, we demonstrate that poly(ethylene glycol)-functionalized gold nanoparticles (PEG-AuNPs) are assembled into close-packed structures that include short-range order with face-centered cubic structure, where crystalline qualities are varied by controlling the electrolyte concentration, pH, and temperature of the suspensions. We show that interpolymer complexation with poly(acrylic acid) (PAA) is induced by lowering the pH level of the PEG-AuNPs suspensions, and furthermore, increasing the temperature of the suspension strengthens interparticle attraction, leading to improved supercrystal structures. Our results indicate that this strategy creates robust nanoparticle superlattices with high thermal stability. The effects of PAA and PEG chain lengths on the assemblies are also investigated, and their optimal conditions for creating improved superlattices are discussed.

9.
J Colloid Interface Sci ; 585: 312-319, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33307304

ABSTRACT

HYPOTHESIS: Grafting nanoparticles surfaces with water-soluble polymers modify interparticle interactions that are pivotal for assembling them into ordered phases. By manipulating salt concentrations of gold nanoparticles (AuNPs) that are grafted with poly(N-isopropylacrylamide) (PNIPAM-AuNPs), we hypothesize that various aggregated phases form at the suspension/vapor interface or in the bulk that depend on the molecular weight (MW) of PNIPAM and on salt concentrations. EXPERIMENTS: AuNPs are grafted with thiolated PNIPAM of molecular weights of 3 or 6 kDa, and grafting is confirmed by dynamic light scattering. Liquid-surfaces X-ray reflectivity and grazing incidence small-angle X-ray scattering are used to determine the density profiles of the suspension/vapor interface and their inplane structure as salt is added to the suspensions. FINDINGS: We find that surface enrichment is induced by adding NaCl to the suspensions, and that at low salt concentrations, the monoparticle layer formed is dispersed, and above a threshold salt concentration, depending on MW of PNIPAM, the PNIPAM-AuNPs order in a hexagonal structure. We show that the lattice constant of the two-dimensional hexagonal structure varies with salt concentration, and more significantly with MW of PNIPAM.

10.
ACS Nano ; 14(5): 6007-6012, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32348115

ABSTRACT

We report on the assembly of gold nanorods functionalized with poly(ethylene glycol) in aqueous suspensions by electrostatic control and hydrogen bonds provided by polyelectrolyte linkers (i.e., interpolymer complexation processes). Small-angle X-ray scattering reveals that the quality and stability of the assemblies into the hexagonal columnar phases increase with temperature. Our study shows that the lattice constant of the ordered structures is tunable over a wide range of values by the interplay between electrostatic and hydrophobic effects.

11.
Langmuir ; 36(1): 311-317, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31838851

ABSTRACT

We use synchrotron X-ray reflectivity and grazing incidence small-angle X-ray scattering to investigate the surface assembly of the poly(ethylene glycol) (PEG)-grafted gold nanoparticles (PEG-AuNPs) induced by different salts. We find that NaCl and CsCl behave as many other electrolytes, namely, drive the PEG-AuNPs to the vapor/suspension interface to form a layer of single-particle depth and organize them into very high-quality two-dimensional (2D) hexagonal crystals. By contrast, NaI induces the migration of PEG-AuNPs to the aqueous surface at much higher surface densities than the other salts (at similar concentrations). The resulting 2D ordering at moderate NaI concentrations is very short ranged, and at a higher NaI concentration, the high-density monolayer is amorphous. Considering NaCl, CsCl and the majority of salts behave similarly, this implicates the anomaly of iodine ion (I-) in this unusual surface population. We argue that the influence of most electrolytes on the PEG corona preserves the polymer in the θ-point with sufficient flexibility to settle into a highly ordered state, whereas I- has a much more severe effect on the corona by collapsing it. The collapsed PEG renders the grafted AuNP a nonspherical shaped complex that, although packs at high density, cannot organize into a 2D ordered arrangement.

12.
Soft Matter ; 15(47): 9690-9699, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31720681

ABSTRACT

We present a coarse grained model for a system where nanocrystals are functionalized with a polymer that is a hydrogen bond acceptor, such as polyethylene glycol (PEG), and are dispersed in a solution with a polymer whose monomers consist of a hydrogen bond donor, such as polyacrylic acid (PAA) at low pH (interpolymer complexation). We determine the minimum concentration of the polymer donor to induce aggregation and the structure and dynamics of the induced (fcc) superlattice. Our results are compared to previous and new experiments.

13.
Langmuir ; 35(30): 9769-9776, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31257890

ABSTRACT

Poly(ethylene glycol) (PEG) is widely used to modulate the hydration states of biomaterials and is often applied to produce nonfouling surfaces. Here, we present X-ray scattering data, which show that it is the surface segregation of PEG, not just its presence in the bulk, that makes this happen by influencing the hydrophilicity of PEG-containing substrates. We demonstrate a temperature-dependent trigger that transforms a PEG-containing substrate from a protein-adsorbing to a protein-repelling state. On films of poly(desaminotyrosyl-tyrosine-co-PEG carbonate) with high (20 wt %) PEG content, in which very little protein adsorption is expected, quartz crystal microbalance data showed significant adsorption of fibrinogen and bovine serum albumin at 8 °C. The surface became protein-repellent at 37.5 °C. When the same polymer was iodinated, the polymer was protein-adsorbent, even when 37 wt % PEG was incorporated into the polymer backbone. This demonstrates that high PEG content by itself is not sufficient to repel proteins. By inhibiting phase separation either with iodine or by lowering the temperature, we show that PEG must phase-separate and bloom to the surface to create an antifouling surface. These results suggest an opportunity to design materials with high PEG content that can be switched from a protein-attractant to a protein-repellent state by inducing phase separation through brief exposure to temperatures above their glass transition temperature.


Subject(s)
Polyethylene Glycols/chemistry , Proteins/chemistry , Temperature , Adsorption , Animals , Fibrinogen/chemistry , Fibrinogen/isolation & purification , Hydrophobic and Hydrophilic Interactions , Pressure , Proteins/isolation & purification , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/isolation & purification
14.
Langmuir ; 35(6): 2251-2260, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30628793

ABSTRACT

We report on the effect of interpolymer complexes (IPCs) of poly(acrylic acid) (PAA) with poly(ethylene glycol)-functionalized Au nanoparticles (PEG-AuNPs) as they assemble at the vapor-liquid interface, using surface-sensitive synchrotron X-ray scattering techniques. Depending on the suspension pH, PAA functions both as a weak polyelectrolyte and a hydrogen bond donor, and these two roles affect the interfacial assembly of PEG-AuNPs differently. Above its isoelectric point, we find that PAA leads to the formation of a PEG-AuNP monolayer at the interface with a hexagonal structure. In the presence of high concentration of HCl (i.e., below the isoelectric point), at which PAA forms IPCs with PEG, the hexagonal structure at the interface appears to deteriorate, concurrent with aggregation in the bulk. Thus, while the electrolytic behavior of PAA induces interfacial assembly, the hydrogen bonding behavior, as PAA becomes neutral, favors the formation of 3D assemblies. For comparison, we also report on the formation of PEG-AuNP monolayers (in the absence of PAA) with strong electrolytes such as HCl, H2SO4, and NaOH that lead to a high degree of crystallinity.

15.
Sci Rep ; 9(1): 20349, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31889079

ABSTRACT

Although challenging, assembling and orienting non-spherical nanomaterials into two- and three-dimensional (2D and 3D) ordered arrays can facilitate versatile collective properties by virtue of their shape-dependent properties that cannot be realized with their spherical counterparts. Here, we report on the self-assembly of gold nanorods (AuNRs) into 2D films at the vapor/liquid interface facilitated by grafting them with poly(ethylene glycol) (PEG). Using surface sensitive synchrotron grazing incidence small angle X-ray scattering (GISAXS) and specular X-ray reflectivity (XRR), we show that PEG-AuNRs in aqueous suspensions migrate to the vapor/liquid interface in the presence of salt, forming a uniform monolayer with planar-to-surface orientation. Furthermore, the 2D assembled PEG functionalized AuNRs exhibit short range order into rectangular symmetry with side-by-side and tail-to-tail nearest-neighbor packing. The effect of PEG chain length and salt concentration on the 2D assembly are also reported.

16.
Nanotechnology ; 29(50): 505601, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30222130

ABSTRACT

Using scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy, we show that Ru forms metallic nanoislands on graphite, covered by a graphene monolayer. These islands are air-stable, contain 2-4 layers of Ru, and have diameters on the order of 10 nm. To produce these nanoislands two conditions must be met during synthesis. The graphite surface must be ion-bombarded, and subsequently held at an elevated temperature (1000-1180 K) during Ru deposition. A coincidence lattice forms between the graphene overlayer and the Ru island top. Its characteristics-coincidence lattice constant, corrugation amplitude, and variation of carbon lattice appearance within the unit cell-closely resemble the well-established characteristics of single-layer graphene on the (0001) surface of bulk Ru. Quantitative analysis of the graphene lattice in relation to the coincidence lattice on the island tops show that the two-dimensional lattice constant of the underlying metal equals that of bulk Ru(0001), within experimental error. The embedded Ru islands are energetically favored over on-top (adsorbed) islands, based on density-functional-theory calculations for Ru films with 1-3 Ru layers. We propose a formation mechanism in which Ru atoms intercalate via defects that act as entry portals to the carbon galleries, followed by nucleation and growth in the galleries. In this model, high deposition temperature is necessary to prevent blockage of entry portals.

17.
Langmuir ; 34(28): 8374-8378, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29947524

ABSTRACT

Surface-sensitive X-ray reflectivity and grazing incidence small-angle X-ray scattering reveal the structure of polymer-capped-gold nanoparticles (AuNPs that are grafted with poly( N-isopropylacrylamide); PNIPAM-AuNPs) as they self-assemble and crystallize at the aqueous suspension/vapor interface. Citrate-stabilized AuNPs (5 and 10 nm in nominal diameter) are ligand-exchanged by 6 kDa PNIPAM-thiol to form corona brushes around the AuNPs that are highly stable and dispersed in aqueous suspensions. Surprisingly, no clear evidence of thermosensitive effect on surface enrichment or self-assembly of the PNIPAM-AuNPs is observed in the 10-35 °C temperature range. However, addition of simple salts (in this case, NaCl) to the suspension induces migration of the PNIPAM-AuNPs to the aqueous surface, and above a threshold salt concentration, two-dimensional crystals are formed. The 10 nm PNIPAM-AuNPs form a highly ordered single layer with in-plane triangular structure, whereas the 5 nm capped NPs form short-range triangular structure that gradually becomes denser as salt concentration increases.

18.
Langmuir ; 33(43): 12227-12234, 2017 10 31.
Article in English | MEDLINE | ID: mdl-28985464

ABSTRACT

We report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor-liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor-liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to the protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.

19.
Nanoscale ; 9(25): 8710-8715, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28616945

ABSTRACT

Taking advantage of the aqueous biphasic behavior of polyethylene glycol (PEG)/salts, recent experiments have demonstrated self-assembly and crystallization of PEG-grafted gold nanoparticles (PEG-AuNPs) into tunable two-dimensional (2D) supercrystals by adjusting salt concentration (for instance, K2CO3). In those studies, combined experimental evidence and theoretical analysis have pointed out the possibility that similar strategies can lead to three-dimensional (3D) formation of ordered nanoparticle precipitates. Indeed, a detailed small-angle X-ray scattering (SAXS) study reported herein reveals the spontaneous formation of PEG-AuNPs assemblies in high-concentration salt solutions that exhibit short-range 3D order compatible with fcc symmetry. We argue that the assembly into fcc crystals is driven by partnering nearest-neighbors to minimize an effective surface-tension gradient at the boundary between the polymer shell and the high-salt media. We report SAXS and other results on PEG-AuNPs of various Au core diameters in the range of 10 to 50 nm and analyze them in the framework of brush-polymer theory revealing a systematic prediction of the nearest-neighbor distance in the 3D assemblies.

20.
ACS Appl Mater Interfaces ; 9(3): 2678-2685, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-27982563

ABSTRACT

To tailor the nanomorphology in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) bulk heterojunction (BHJ). In addition to control; wet P3HT:PC60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions-horizontal (H), tilted (T), and vertical (V)-relative to the plane of the substrate. Surface and bulk characterizations of the field-treated BHJs affirmed that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following the E-field. Using E-field treatment, we achieved favorable morphologies with efficient charge separation, transport, and collection. We improve; (1) the hole mobility values up to 19.4 × 10-4 ± 1.6 × 10-4 cm2 V-1 s-1 and (2) the power conversion efficiency (PCE) of conventional and inverted OPVs up to 2.58 ± 0.02% and 4.1 ± 0.40%, respectively. This E-field approach can serve as a new morphology-tuning technique, which is generally applicable to other polymer-fullerene systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...