Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters











Publication year range
1.
J Chem Phys ; 161(9)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39225532

ABSTRACT

The diffusion of proteins is significantly affected by macromolecular crowding. Molecular simulations accounting for protein interactions at atomic resolution are useful for characterizing the diffusion patterns in crowded environments. We present a comprehensive analysis of protein diffusion under different crowding conditions based on our recent docking-based approach simulating an intracellular crowded environment by sampling the intermolecular energy landscape using the Markov Chain Monte Carlo protocol. The procedure was extensively benchmarked, and the results are in very good agreement with the available experimental and theoretical data. The translational and rotational diffusion rates were determined for different types of proteins under crowding conditions in a broad range of concentrations. A protein system representing most abundant protein types in the E. coli cytoplasm was simulated, as well as large systems of other proteins of varying sizes in heterogeneous and self-crowding solutions. Dynamics of individual proteins was analyzed as a function of concentration and different diffusion rates in homogeneous and heterogeneous crowding. Smaller proteins diffused faster in heterogeneous crowding of larger molecules, compared to their diffusion in the self-crowded solution. Larger proteins displayed the opposite behavior, diffusing faster in the self-crowded solution. The results show the predictive power of our structure-based simulation approach for long timescales of cell-size systems at atomic resolution.


Subject(s)
Monte Carlo Method , Diffusion , Proteins/chemistry , Solutions , Molecular Docking Simulation , Escherichia coli/chemistry , Molecular Dynamics Simulation , Markov Chains
2.
J Mol Biol ; 436(17): 168540, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39237205

ABSTRACT

Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the Dockground database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and l-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q and its web interface through the Dockground resource at https://dockground.compbio.ku.edu/assessment/.


Subject(s)
Databases, Protein , Protein Conformation , Proteins , Software , Proteins/chemistry , Models, Molecular , Computational Biology/methods , Molecular Docking Simulation , Algorithms , Protein Interaction Mapping/methods , Protein Binding
3.
Proteomics ; 23(17): e2300219, 2023 09.
Article in English | MEDLINE | ID: mdl-37667816

ABSTRACT

Structural characterization of protein interactions is essential for our ability to understand and modulate physiological processes. Computational approaches to modeling of protein complexes provide structural information that far exceeds capabilities of the existing experimental techniques. Protein structure prediction in general, and prediction of protein interactions in particular, has been revolutionized by the rapid progress in Deep Learning techniques. The work of Schweke et al. (Proteomics 2023, 23, 2200323) presents a community-wide study of an important problem of distinguishing physiological protein-protein complexes/interfaces (experimentally determined or modeled) from non-physiological ones. The authors designed and generated a large benchmark set of physiological and non-physiological homodimeric complexes, and evaluated a large set of scoring functions, as well as AlphaFold predictions, on their ability to discriminate the non-physiological interfaces. The problem of separating physiological interfaces from non-physiological ones is very difficult, largely due to the lack of a clear distinction between the two categories in a crowded environment inside a living cell. Still, the ability to identify key physiologically significant interfaces in the variety of possible configurations of a protein-protein complex is important. The study presents a major data resource and methodological development in this important direction for molecular and cellular biology.


Subject(s)
Benchmarking , Proteomics
4.
Front Mol Biosci ; 9: 1031225, 2022.
Article in English | MEDLINE | ID: mdl-36425657

ABSTRACT

Association of proteins to a significant extent is determined by their geometric complementarity. Large-scale recognition factors, which directly relate to the funnel-like intermolecular energy landscape, provide important insights into the basic rules of protein recognition. Previously, we showed that simple energy functions and coarse-grained models reveal major characteristics of the energy landscape. As new computational approaches increasingly address structural modeling of a whole cell at the molecular level, it becomes important to account for the crowded environment inside the cell. The crowded environment drastically changes protein recognition properties, and thus significantly alters the underlying energy landscape. In this study, we addressed the effect of crowding on the protein binding funnel, focusing on the size of the funnel. As crowders occupy the funnel volume, they make it less accessible to the ligands. Thus, the funnel size, which can be defined by ligand occupancy, is generally reduced with the increase of the crowders concentration. This study quantifies this reduction for different concentration of crowders and correlates this dependence with the structural details of the interacting proteins. The results provide a better understanding of the rules of protein association in the crowded environment.

5.
Proc Natl Acad Sci U S A ; 119(41): e2210249119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191203

ABSTRACT

Computational methodologies are increasingly addressing modeling of the whole cell at the molecular level. Proteins and their interactions are the key component of cellular processes. Techniques for modeling protein interactions, thus far, have included protein docking and molecular simulation. The latter approaches account for the dynamics of the interactions but are relatively slow, if carried out at all-atom resolution, or are significantly coarse grained. Protein docking algorithms are far more efficient in sampling spatial coordinates. However, they do not account for the kinetics of the association (i.e., they do not involve the time coordinate). Our proof-of-concept study bridges the two modeling approaches, developing an approach that can reach unprecedented simulation timescales at all-atom resolution. The global intermolecular energy landscape of a large system of proteins was mapped by the pairwise fast Fourier transform docking and sampled in space and time by Monte Carlo simulations. The simulation protocol was parametrized on existing data and validated on a number of observations from experiments and molecular dynamics simulations. The simulation protocol performed consistently across very different systems of proteins at different protein concentrations. It recapitulated data on the previously observed protein diffusion rates and aggregation. The speed of calculation allows reaching second-long trajectories of protein systems that approach the size of the cells, at atomic resolution.


Subject(s)
Molecular Dynamics Simulation , Proteins , Algorithms , Biophysical Phenomena , Kinetics , Monte Carlo Method
6.
Protein Sci ; 31(12): e4481, 2022 12.
Article in English | MEDLINE | ID: mdl-36281025

ABSTRACT

Structural information of protein-protein interactions is essential for characterization of life processes at the molecular level. While a small fraction of known protein interactions has experimentally determined structures, computational modeling of protein complexes (protein docking) has to fill the gap. The Dockground resource (http://dockground.compbio.ku.edu) provides a collection of datasets for the development and testing of protein docking techniques. Currently, Dockground contains datasets for the bound and the unbound (experimentally determined and simulated) protein structures, model-model complexes, docking decoys of experimentally determined and modeled proteins, and templates for comparative docking. The Dockground bound proteins dataset is a core set, from which other Dockground datasets are generated. It is devised as a relational PostgreSQL database containing information on experimentally determined protein-protein complexes. This report on the Dockground resource describes current status of the datasets, new automated update procedures and further development of the core datasets. We also present a new Dockground interactive web interface, which allows search by various parameters, such as release date, multimeric state, complex type, structure resolution, and so on, visualization of the search results with a number of customizable parameters, as well as downloadable datasets with predefined levels of sequence and structure redundancy.


Subject(s)
Proteins , Software , Proteins/chemistry , Computer Simulation , Protein Binding , Molecular Docking Simulation , Protein Conformation , Computational Biology/methods
7.
J Mol Biol ; 434(11): 167608, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35662458

ABSTRACT

Rapid progress in structural modeling of proteins and their interactions is powered by advances in knowledge-based methodologies along with better understanding of physical principles of protein structure and function. The pool of structural data for modeling of proteins and protein-protein complexes is constantly increasing due to the rapid growth of protein interaction databases and Protein Data Bank. The GWYRE (Genome Wide PhYRE) project capitalizes on these developments by advancing and applying new powerful modeling methodologies to structural modeling of protein-protein interactions and genetic variation. The methods integrate knowledge-based tertiary structure prediction using Phyre2 and quaternary structure prediction using template-based docking by a full-structure alignment protocol to generate models for binary complexes. The predictions are incorporated in a comprehensive public resource for structural characterization of the human interactome and the location of human genetic variants. The GWYRE resource facilitates better understanding of principles of protein interaction and structure/function relationships. The resource is available at http://www.gwyre.org.


Subject(s)
Protein Interaction Mapping , Proteins , Software , Binding Sites , Computational Biology/methods , Databases, Protein , Humans , Molecular Docking Simulation , Protein Binding , Protein Interaction Mapping/methods , Proteins/chemistry
8.
PLoS One ; 17(5): e0267531, 2022.
Article in English | MEDLINE | ID: mdl-35580077

ABSTRACT

Membrane proteins are significantly underrepresented in Protein Data Bank despite their essential role in cellular mechanisms and the major progress in experimental protein structure determination. Thus, computational approaches are especially valuable in the case of membrane proteins and their assemblies. The main focus in developing structure prediction techniques has been on soluble proteins, in part due to much greater availability of the structural data. Currently, structure prediction of protein complexes (protein docking) is a well-developed field of study. However, the generic protein docking approaches are not optimal for the membrane proteins because of the differences in physicochemical environment and the spatial constraints imposed by the membranes. Thus, docking of the membrane proteins requires specialized computational methods. Development and benchmarking of the membrane protein docking approaches has to be based on high-quality sets of membrane protein complexes. In this study we present a new dataset of 456 non-redundant alpha helical binary interfaces. The set is significantly larger and more representative than the previously developed sets. In the future, it will become the basis for the development of docking and scoring benchmarks, similar to the ones for soluble proteins in the Dockground resource http://dockground.compbio.ku.edu.


Subject(s)
Benchmarking , Membrane Proteins , Computational Biology/methods , Databases, Protein , Molecular Docking Simulation , Protein Binding , Software
9.
Proteins ; 90(6): 1259-1266, 2022 06.
Article in English | MEDLINE | ID: mdl-35072956

ABSTRACT

Protein docking protocols typically involve global docking scan, followed by re-ranking of the scan predictions by more accurate scoring functions that are either computationally too expensive or algorithmically impossible to include in the global scan. Development and validation of scoring methodologies are often performed on scoring benchmark sets (docking decoys) which offer concise and nonredundant representation of the global docking scan output for a large and diverse set of protein-protein complexes. Two such protein-protein scoring benchmarks were built for the Dockground resource, which contains various datasets for the development and testing of protein docking methodologies. One set was generated based on the Dockground unbound docking benchmark 4, and the other based on protein models from the Dockground model-model benchmark 2. The docking decoys were designed to reflect the reality of the real-case docking applications (e.g., correct docking predictions defined as near-native rather than native structures), and to minimize applicability of approaches not directly related to the development of scoring functions (reducing clustering of predictions in the binding funnel and disparity in structural quality of the near-native and nonnative matches). The sets were further characterized by the source organism and the function of the protein-protein complexes. The sets, freely available to the research community on the Dockground webpage, present a unique, user-friendly resource for the developing and testing of protein-protein scoring approaches.


Subject(s)
Benchmarking , Proteins , Molecular Docking Simulation , Protein Binding , Protein Conformation , Proteins/chemistry
10.
Bioinformatics ; 37(4): 497-505, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32960948

ABSTRACT

MOTIVATION: Procedures for structural modeling of protein-protein complexes (protein docking) produce a number of models which need to be further analyzed and scored. Scoring can be based on independently determined constraints on the structure of the complex, such as knowledge of amino acids essential for the protein interaction. Previously, we showed that text mining of residues in freely available PubMed abstracts of papers on studies of protein-protein interactions may generate such constraints. However, absence of post-processing of the spotted residues reduced usability of the constraints, as a significant number of the residues were not relevant for the binding of the specific proteins. RESULTS: We explored filtering of the irrelevant residues by two machine learning approaches, Deep Recursive Neural Network (DRNN) and Support Vector Machine (SVM) models with different training/testing schemes. The results showed that the DRNN model is superior to the SVM model when training is performed on the PMC-OA full-text articles and applied to classification (interface or non-interface) of the residues spotted in the PubMed abstracts. When both training and testing is performed on full-text articles or on abstracts, the performance of these models is similar. Thus, in such cases, there is no need to utilize computationally demanding DRNN approach, which is computationally expensive especially at the training stage. The reason is that SVM success is often determined by the similarity in data/text patterns in the training and the testing sets, whereas the sentence structures in the abstracts are, in general, different from those in the full text articles. AVAILABILITYAND IMPLEMENTATION: The code and the datasets generated in this study are available at https://gitlab.ku.edu/vakser-lab-public/text-mining/-/tree/2020-09-04. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Data Mining , Machine Learning , Proteins , PubMed , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL