Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 10(3)2020 03 18.
Article in English | MEDLINE | ID: mdl-32197509

ABSTRACT

BACKGROUND: Prostate cancer (PCa) dissemination shows a tendency to develop in the bone, where heme oxygenase 1 (HO-1) plays a critical role in bone remodeling. Previously by LC/ESI-MSMS, we screened for HO-1 interacting proteins and identified annexin 2 (ANXA2). The aim of this study was to analyze the relevance of ANXA2/HO-1 in PCa and bone metastasis. METHODS: We assessed ANXA2 levels using a co-culture transwell system of PC3 cells (pre-treated or not with hemin, an HO-1 specific inducer) and the pre-osteoclastic Raw264.7 cell line. RESULTS: Under co-culture conditions, ANXA2 mRNA levels were significantly modulated in both cell lines. Immunofluorescence analysis unveiled a clear ANXA2 reduction in cell membrane immunostaining for Raw264.7 under the same conditions. This effect was supported by the detection of a decrease in Ca2+ concentration in the conditioned medium. HO-1 induction in tumor cells prevented both, the ANXA2 intracellular relocation and the decrease in Ca2+ concentration. Further, secretome analysis revealed urokinase (uPA) as a key player in the communication between osteoclast progenitors and PC3 cells. To assess the clinical significance of ANXA2/HO-1, we performed a bioinformatics analysis and identified that low expression of each gene strongly associated with poor prognosis in PCa regardless of the clinico-pathological parameters assessed. Further, these genes appear to behave in a dependent manner. CONCLUSIONS: ANXA2/HO-1 rises as a critical axis in PCa.


Subject(s)
Annexin A2/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Heme Oxygenase-1/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Tumor Microenvironment , Animals , Bone Neoplasms/pathology , Bone and Bones/metabolism , Bone and Bones/pathology , Humans , Male , Mice , Neoplasm Metastasis , PC-3 Cells , Prostatic Neoplasms/pathology , RAW 264.7 Cells
2.
Oncotarget ; 5(12): 4087-102, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24961479

ABSTRACT

Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and ß-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/ ß-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and ß-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa.


Subject(s)
Cadherins/metabolism , Heme Oxygenase-1/genetics , Prostatic Neoplasms/genetics , beta Catenin/metabolism , Animals , Cell Adhesion , Down-Regulation , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms/metabolism , Reactive Oxygen Species , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...