Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
JAMA Intern Med ; 184(2): 164-173, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38190122

ABSTRACT

Importance: Diagnostic errors contribute to patient harm, though few data exist to describe their prevalence or underlying causes among medical inpatients. Objective: To determine the prevalence, underlying cause, and harms of diagnostic errors among hospitalized adults transferred to an intensive care unit (ICU) or who died. Design, Setting, and Participants: Retrospective cohort study conducted at 29 academic medical centers in the US in a random sample of adults hospitalized with general medical conditions and who were transferred to an ICU, died, or both from January 1 to December 31, 2019. Each record was reviewed by 2 trained clinicians to determine whether a diagnostic error occurred (ie, missed or delayed diagnosis), identify diagnostic process faults, and classify harms. Multivariable models estimated association between process faults and diagnostic error. Opportunity for diagnostic error reduction associated with each fault was estimated using the adjusted proportion attributable fraction (aPAF). Data analysis was performed from April through September 2023. Main Outcomes and Measures: Whether or not a diagnostic error took place, the frequency of underlying causes of errors, and harms associated with those errors. Results: Of 2428 patient records at 29 hospitals that underwent review (mean [SD] patient age, 63.9 [17.0] years; 1107 [45.6%] female and 1321 male individuals [54.4%]), 550 patients (23.0%; 95% CI, 20.9%-25.3%) had experienced a diagnostic error. Errors were judged to have contributed to temporary harm, permanent harm, or death in 436 patients (17.8%; 95% CI, 15.9%-19.8%); among the 1863 patients who died, diagnostic error was judged to have contributed to death in 121 (6.6%; 95% CI, 5.3%-8.2%). In multivariable models examining process faults associated with any diagnostic error, patient assessment problems (aPAF, 21.4%; 95% CI, 16.4%-26.4%) and problems with test ordering and interpretation (aPAF, 19.9%; 95% CI, 14.7%-25.1%) had the highest opportunity to reduce diagnostic errors; similar ranking was seen in multivariable models examining harmful diagnostic errors. Conclusions and Relevance: In this cohort study, diagnostic errors in hospitalized adults who died or were transferred to the ICU were common and associated with patient harm. Problems with choosing and interpreting tests and the processes involved with clinician assessment are high-priority areas for improvement efforts.


Subject(s)
Critical Care , Intensive Care Units , Adult , Humans , Male , Female , Middle Aged , Cohort Studies , Retrospective Studies , Diagnostic Errors
2.
Eur Urol Focus ; 10(1): 66-74, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37507248

ABSTRACT

BACKGROUND: Up to 40% of patients with prostate cancer may develop biochemical recurrence after surgery, with salvage radiation therapy (SRT) being the only curative option. In 2016, Tendulkar et al. (Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J Clin Oncol 2016;34:3648-54) published a nomogram to predict distant metastasis in a cohort of patients treated with SRT with pre-SRT prostate-specific antigen (PSA) of 0.5 ng/ml after radical prostatectomy. In modern practice, SRT is delivered at lower PSA values. OBJECTIVE: To train and externally validate a machine learning model to predict the risk of distant metastasis at 5 yr in a contemporary cohort of patients receiving SRT. DESIGN, SETTING, AND PARTICIPANTS: We trained a machine learning model on data from 2418 patients treated with SRT at one institution, with a median PSA value of 0.27 ng/ml. External validation was done in 475 patients treated at two different institutions. Patients with cM1, pN1, or pT4 disease were excluded, as were patients with PSA >2 ng/ml or PSA 0, and patients with radiation dose <60 or ≥80 Gy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Model performance was assessed using calibration and time-dependent area under the receiver operating curve (tAUC). RESULTS AND LIMITATIONS: Our model had better calibration and showed improved discrimination (tAUC = 0.72) compared with the Tendulkar model (tAUC = 0.60, p < 0.001). The main limitations of this study are its retrospective design and lack of validation on patients who received hormone therapy. CONCLUSIONS: The updated model can be used to provide more individualized risk assessments to patients treated with SRT at low PSA values, improving decision-making. PATIENT SUMMARY: Up to 40% of patients with prostate cancer may develop biochemical recurrence after surgery, with salvage radiation therapy as the only potentially curative option. We trained and validated a machine learning model using clinical and surgical data to predict a patient's risk of distant metastasis at 5 yr after treatment. Our model outperformed the reference tool and can improve clinical decision-making by providing more personalized risk assessment.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Male , Humans , Retrospective Studies , Prostate/pathology , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Prostatectomy/methods , Salvage Therapy/methods
3.
Int J Radiat Oncol Biol Phys ; 119(1): 66-77, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38000701

ABSTRACT

PURPOSE: This study aimed to predict the probability of grade ≥2 pneumonitis or dyspnea within 12 months of receiving conventionally fractionated or mildly hypofractionated proton beam therapy for locally advanced lung cancer using machine learning. METHODS AND MATERIALS: Demographic and treatment characteristics were analyzed for 965 consecutive patients treated for lung cancer with conventionally fractionated or mildly hypofractionated (2.2-3 Gy/fraction) proton beam therapy across 12 institutions. Three machine learning models (gradient boosting, additive tree, and logistic regression with lasso regularization) were implemented to predict Common Terminology Criteria for Adverse Events version 4 grade ≥2 pulmonary toxicities using double 10-fold cross-validation for parameter hyper-tuning without leak of information. Balanced accuracy and area under the curve were calculated, and 95% confidence intervals were obtained using bootstrap sampling. RESULTS: The median age of the patients was 70 years (range, 20-97), and they had predominantly stage IIIA or IIIB disease. They received a median dose of 60 Gy in 2 Gy/fraction, and 46.4% received concurrent chemotherapy. In total, 250 (25.9%) had grade ≥2 pulmonary toxicity. The probability of pulmonary toxicity was 0.08 for patients treated with pencil beam scanning and 0.34 for those treated with other techniques (P = 8.97e-13). Use of abdominal compression and breath hold were highly significant predictors of less toxicity (P = 2.88e-08). Higher total radiation delivered dose (P = .0182) and higher average dose to the ipsilateral lung (P = .0035) increased the likelihood of pulmonary toxicities. The gradient boosting model performed the best of the models tested, and when demographic and dosimetric features were combined, the area under the curve and balanced accuracy were 0.75 ± 0.02 and 0.67 ± 0.02, respectively. After analyzing performance versus the number of data points used for training, we observed that accuracy was limited by the number of observations. CONCLUSIONS: In the largest analysis of prospectively enrolled patients with lung cancer assessing pulmonary toxicities from proton therapy to date, advanced machine learning methods revealed that pencil beam scanning, abdominal compression, and lower normal lung doses can lead to significantly lower probability of developing grade ≥2 pneumonitis or dyspnea.


Subject(s)
Lung Neoplasms , Pneumonia , Proton Therapy , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Lung Neoplasms/drug therapy , Proton Therapy/adverse effects , Protons , Prospective Studies , Pneumonia/etiology , Dyspnea/etiology , Radiotherapy Dosage
4.
Phys Med Biol ; 68(19)2023 09 22.
Article in English | MEDLINE | ID: mdl-37659406

ABSTRACT

Objective. Fully automated beam orientation optimization (BOO) for intensity-modulated radiotherapy and intensity modulated proton therapy (IMPT) is gaining interest, since achieving optimal plan quality for an unknown number of fixed beam arrangements is tedious. Fast group sparsity-based optimization methods have been proposed to find the optimal orientation, but manual tuning is required to eliminate the exact number of beams from a large candidate set. Here, we introduce a fast, automated gradient descent-based path-seeking algorithm (PathGD), which performs fluence map optimization for sequentially added beams, to visualize the dosimetric benefit of one added field at a time.Approach. Several configurations of 2-4 proton and 5-15 photon beams were selected for three head-and-neck patients using PathGD, which was compared to group sparsity-regularized BOO solved with the fast iterative shrinkage-thresholding algorithm (GS-FISTA), and manually selected IMPT beams or one coplanar photon VMAT arc (MAN). Once beams were chosen, all plans were compared on computational efficiency, dosimetry, and for proton plans, robustness.Main results. With each added proton beam, Clinical Target Volume (CTV) and organs at risk (OAR) dosimetric cost improved on average across plans by [1.1%, 13.6%], and for photons, [0.6%, 2.0%]. Comparing algorithms, beam selection for PathGD was faster than GS-FISTA on average by 35%, and PathGD matched the CTV coverage of GS-FISTA plans while reducing OAR mean and maximum dose in all structures by an average of 13.6%. PathGD was able to improve CTV [Dmax, D95%] by [2.6%, 5.2%] and reduced worst-case [max, mean] dose in OARs by [11.1%, 13.1%].Significance. The benefit of a path-seeking algorithm is the beam-by-beam analysis of dosimetric cost. PathGD was shown to be most efficient and dosimetrically desirable amongst group sparsity and manual BOO methods, and highlights the sensitivity of beam addition for IMPT in particular.


Subject(s)
Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Protons , Algorithms , Head
5.
J Appl Clin Med Phys ; 24(12): e14146, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37696265

ABSTRACT

OBJECTIVES: The CyberKnife system is a robotic radiosurgery platform that allows the delivery of lung SBRT treatments using fiducial-free soft-tissue tracking. However, not all lung cancer patients are eligible for lung tumor tracking. Tumor size, density, and location impact the ability to successfully detect and track a lung lesion in 2D orthogonal X-ray images. The standard workflow to identify successful candidates for lung tumor tracking is called Lung Optimized Treatment (LOT) simulation, and involves multiple steps from CT acquisition to the execution of the simulation plan on CyberKnife. The aim of the study is to develop a deep learning classification model to predict which patients can be successfully treated with lung tumor tracking, thus circumventing the LOT simulation process. METHODS: Target tracking is achieved by matching orthogonal X-ray images with a library of digital radiographs reconstructed from the simulation CT scan (DRRs). We developed a deep learning model to create a binary classification of lung lesions as being trackable or untrackable based on tumor template DRR extracted from the CyberKnife system, and tested five different network architectures. The study included a total of 271 images (230 trackable, 41 untrackable) from 129 patients with one or multiple lung lesions. Eighty percent of the images were used for training, 10% for validation, and the remaining 10% for testing. RESULTS: For all five convolutional neural networks, the binary classification accuracy reached 100% after training, both in the validation and the test set, without any false classifications. CONCLUSIONS: A deep learning model can distinguish features of trackable and untrackable lesions in DRR images, and can predict successful candidates for fiducial-free lung tumor tracking.


Subject(s)
Deep Learning , Lung Neoplasms , Robotics , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Lung , Computer Simulation
6.
Eur Urol Oncol ; 6(5): 501-507, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36868922

ABSTRACT

BACKGROUND: Pelvic lymph node dissection (PLND) is the gold standard for diagnosis of lymph node involvement (LNI) in patients with prostate cancer. The Roach formula, Memorial Sloan Kettering Cancer Center (MSKCC) calculator, and Briganti 2012 nomogram are elegant and simple traditional tools used to estimate the risk of LNI and select patients for PLND. OBJECTIVE: To determine whether machine learning (ML) can improve patient selection and outperform currently available tools for predicting LNI using similar readily available clinicopathologic variables. DESIGN, SETTING, AND PARTICIPANTS: Retrospective data for patients treated with surgery and PLND between 1990 and 2020 in two academic institutions were used. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We trained three models (two logistic regression models and one gradient-boosted trees-based model [XGBoost]) on data provided from one institution (n = 20267) with age, prostate-specific antigen (PSA) levels, clinical T stage, percentage positive cores, and Gleason scores as inputs. We externally validated these models using data from another institution (n = 1322) and compared their performance to that of the traditional models using the area under the receiver operating characteristic curve (AUC), calibration, and decision curve analysis (DCA). RESULTS AND LIMITATIONS: LNI was present in 2563 patients (11.9%) overall, and in 119 patients (9%) in the validation data set. XGBoost had the best performance among all the models. On external validation, its AUC outperformed that of the Roach formula by 0.08 (95% confidence interval [CI] 0.042-0.12), the MSKCC nomogram by 0.05 (95% CI 0.016-0.070), and the Briganti nomogram by 0.03 (95% CI 0.0092-0.051; all p < 0.05). It also had better calibration and clinical utility in terms of net benefit on DCA across relevant clinical thresholds. The main limitation of the study is its retrospective design. CONCLUSIONS: Taking all measures of performance together, ML using standard clinicopathologic variables outperforms traditional tools in predicting LNI. PATIENT SUMMARY: Determining the risk of cancer spread to the lymph nodes in patients with prostate cancer allows surgeons to perform lymph node dissection only in patients who need it and avoid the side effects of the procedure in those who do not. In this study, we used machine learning to develop a new calculator to predict the risk of lymph node involvement that outperformed traditional tools currently used by oncologists.

7.
Med Phys ; 50(5): 2662-2671, 2023 May.
Article in English | MEDLINE | ID: mdl-36908243

ABSTRACT

BACKGROUND: Misalignment to the incorrect vertebral body remains a rare but serious patient safety risk in image-guided radiotherapy (IGRT). PURPOSE: Our group has proposed that an automated image-review algorithm be inserted into the IGRT process as an interlock to detect off-by-one vertebral body errors. This study presents the development and multi-institutional validation of a convolutional neural network (CNN)-based approach for such an algorithm using patient image data from a planar stereoscopic x-ray IGRT system. METHODS: X-rays and digitally reconstructed radiographs (DRRs) were collected from 429 spine radiotherapy patients (1592 treatment fractions) treated at six institutions using a stereoscopic x-ray image guidance system. Clinically-applied, physician approved, alignments were used for true-negative, "no-error" cases. "Off-by-one vertebral body" errors were simulated by translating DRRs along the spinal column using a semi-automated method. A leave-one-institution-out approach was used to estimate model accuracy on data from unseen institutions as follows: All of the images from five of the institutions were used to train a CNN model from scratch using a fixed network architecture and hyper-parameters. The size of this training set ranged from 5700 to 9372 images, depending on exactly which five institutions were contributing data. The training set was randomized and split using a 75/25 split into the final training/ validation sets. X-ray/ DRR image pairs and the associated binary labels of "no-error" or "shift" were used as the model input. Model accuracy was evaluated using images from the sixth institution, which were left out of the training phase entirely. This test set ranged from 180 to 3852 images, again depending on which institution had been left out of the training phase. The trained model was used to classify the images from the test set as either "no-error" or "shifted", and the model predictions were compared to the ground truth labels to assess the model accuracy. This process was repeated until each institution's images had been used as the testing dataset. RESULTS: When the six models were used to classify unseen image pairs from the institution left out during training, the resulting receiver operating characteristic area under the curve values ranged from 0.976 to 0.998. With the specificity fixed at 99%, the corresponding sensitivities ranged from 61.9% to 99.2% (mean: 77.6%). With the specificity fixed at 95%, sensitivities ranged from 85.5% to 99.8% (mean: 92.9%). CONCLUSION: This study demonstrated the CNN-based vertebral body misalignment model is robust when applied to previously unseen test data from an outside institution, indicating that this proposed additional safeguard against misalignment is feasible.


Subject(s)
Deep Learning , Humans , X-Rays , Vertebral Body , Retrospective Studies , Neural Networks, Computer
8.
BMC Cancer ; 22(1): 1056, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224576

ABSTRACT

BACKGROUND: Despite today's advances in the treatment of cancer, breast cancer-related mortality remains high, in part due to the lack of effective targeted therapies against breast tumor types that do not respond to standard treatments. Therefore, identifying additional breast cancer molecular targets is urgently needed. Super-enhancers are large regions of open chromatin involved in the overactivation of oncogenes. Thus, inhibition of super-enhancers has become a focus in clinical trials for its therapeutic potential. Here, we aimed to identify novel super-enhancer dysregulated genes highly associated with breast cancer patients' poor prognosis and negative response to treatment. METHODS: Using existing datasets containing super-enhancer-associated genes identified in breast tumors and public databases comprising genomic and clinical information for breast cancer patients, we investigated whether highly expressed super-enhancer-associated genes correlate to breast cancer patients' poor prognosis and to patients' poor response to therapy. Our computational findings were experimentally confirmed in breast cancer cells by pharmacological SE disruption and gene silencing techniques. RESULTS: We bioinformatically identified two novel super-enhancer-associated genes - NSMCE2 and MAL2 - highly upregulated in breast tumors, for which high RNA levels significantly and specifically correlate with breast cancer patients' poor prognosis. Through in-vitro pharmacological super-enhancer disruption assays, we confirmed that super-enhancers upregulate NSMCE2 and MAL2 transcriptionally, and, through bioinformatics, we found that high levels of NSMCE2 strongly associate with patients' poor response to chemotherapy, especially for patients diagnosed with aggressive triple negative and HER2 positive tumor types. Finally, we showed that decreasing NSMCE2 gene expression increases breast cancer cells' sensitivity to chemotherapy treatment. CONCLUSIONS: Our results indicate that moderating the transcript levels of NSMCE2 could improve patients' response to standard chemotherapy consequently improving disease outcome. Our approach offers a new avenue to identify a signature of tumor specific genes that are not frequently mutated but dysregulated by super-enhancers. As a result, this strategy can lead to the discovery of potential and novel pharmacological targets for improving targeted therapy and the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Chromatin , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Ligases/genetics , Ligases/metabolism , Myelin and Lymphocyte-Associated Proteolipid Proteins/genetics , Prognosis , RNA
9.
Int J Radiat Oncol Biol Phys ; 113(5): 1091-1102, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35533908

ABSTRACT

PURPOSE: Performing measurement-based patient-specific quality assurance (PSQA) is recognized as a resource-intensive and time inefficient task in the radiation therapy treatment workflow. Paired with technological refinements in modern radiation therapy, research toward measurement-free PSQA has seen increased interest during the past 5 years. However, these efforts have not been clinically implemented or prospectively validated in the United States. We propose a virtual QA (VQA) system and workflow to assess the safety and workload reduction of measurement-free PSQA. METHODS: An XGBoost machine learning model was designed to predict PSQA outcomes of volumetric modulated arc therapy plans, represented as percent differences between the measured ion chamber point dose in a phantom and the corresponding planned dose. The final model was deployed within a web application to predict PSQA outcomes of clinical plans within an existing clinical workflow. The application also displays relevant feature importance and plan-specific distribution analyses relative to database plans for documentation and to aid physicist interpretation and evaluation. VQA predictions were prospectively validated over 3 months of measurements at our clinic to assess safety and efficiency gains. RESULTS: Over 3 months, VQA predictions for 445 volumetric modulated arc therapy plans were prospectively validated at our institution. VQA predictions for these plans had a mean absolute error of 1.08% ± 0.77%, with a maximum absolute error of 2.98%. Using a 1% prediction threshold (ie, plans predicted to have an absolute error <1% would not require a measurement) would yield a 69.2% reduction in QA workload, saving 32.5 hours per month on average, with 81.5% sensitivity, 72.4% specificity, and an area under the curve of 0.81 at a 3% clinical threshold and 100% sensitivity, 70% specificity, and an area under the curve of 0.93 at a 4% clinical threshold. CONCLUSIONS: This is the first prospective clinical implementation and validation of VQA in the United States, which we observed to be efficient. Using a conservative threshold, VQA can substantially reduce the number of required measurements for PSQA, leading to more effective allocation of clinical resources.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Prospective Studies , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
10.
Phys Med Biol ; 67(11)2022 05 27.
Article in English | MEDLINE | ID: mdl-35421855

ABSTRACT

The interest in machine learning (ML) has grown tremendously in recent years, partly due to the performance leap that occurred with new techniques of deep learning, convolutional neural networks for images, increased computational power, and wider availability of large datasets. Most fields of medicine follow that popular trend and, notably, radiation oncology is one of those that are at the forefront, with already a long tradition in using digital images and fully computerized workflows. ML models are driven by data, and in contrast with many statistical or physical models, they can be very large and complex, with countless generic parameters. This inevitably raises two questions, namely, the tight dependence between the models and the datasets that feed them, and the interpretability of the models, which scales with its complexity. Any problems in the data used to train the model will be later reflected in their performance. This, together with the low interpretability of ML models, makes their implementation into the clinical workflow particularly difficult. Building tools for risk assessment and quality assurance of ML models must involve then two main points: interpretability and data-model dependency. After a joint introduction of both radiation oncology and ML, this paper reviews the main risks and current solutions when applying the latter to workflows in the former. Risks associated with data and models, as well as their interaction, are detailed. Next, the core concepts of interpretability, explainability, and data-model dependency are formally defined and illustrated with examples. Afterwards, a broad discussion goes through key applications of ML in workflows of radiation oncology as well as vendors' perspectives for the clinical implementation of ML.


Subject(s)
Radiation Oncology , Machine Learning , Neural Networks, Computer
11.
Adv Radiat Oncol ; 7(2): 100886, 2022.
Article in English | MEDLINE | ID: mdl-35387423

ABSTRACT

Purpose: The aim was to develop a novel artificial intelligence (AI)-guided clinical decision support system, to predict radiation doses to subsites of the mandible using diagnostic computed tomography scans acquired before any planning of head and neck radiation therapy (RT). Methods and Materials: A dose classifier was trained using RT plans from 86 patients with oropharyngeal cancer; the test set consisted of an additional 20 plans. The classifier was trained to predict whether mandible subsites would receive a mean dose >50 Gy. The AI predictions were prospectively evaluated and compared with those of a specialist head and neck radiation oncologist for 9 patients. Positive predictive value (PPV), negative predictive value (NPV), Pearson correlation coefficient, and Lin concordance correlation coefficient were calculated to compare the AI predictions to those of the physician. Results: In the test data set, the AI predictions had a PPV of 0.95 and NPV of 0.88. For 9 patients evaluated prospectively, there was a strong correlation between the predictions of the AI algorithm and physician (P = .72, P < .001). Comparing the AI algorithm versus the physician, the PPVs were 0.82 versus 0.25, and the NPVs were 0.94 versus 1.0, respectively. Concordance between physician estimates and final planned doses was 0.62; this was 0.71 between AI-based estimates and final planned doses. Conclusion: AI-guided decision support increased precision and accuracy of pre-RT dental dose estimates.

12.
Annu Rev Public Health ; 43: 59-78, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34871504

ABSTRACT

The big data revolution presents an exciting frontier to expand public health research, broadening the scope of research and increasing the precision of answers. Despite these advances, scientists must be vigilant against also advancing potential harms toward marginalized communities. In this review, we provide examples in which big data applications have (unintentionally) perpetuated discriminatory practices, while also highlighting opportunities for big data applications to advance equity in public health. Here, big data is framed in the context of the five Vs (volume, velocity, veracity, variety, and value), and we propose a sixth V, virtuosity, which incorporates equity and justice frameworks. Analytic approaches to improving equity are presented using social computational big data, fairness in machine learning algorithms, medical claims data, and data augmentation as illustrations. Throughout, we emphasize the biasing influence of data absenteeism and positionality and conclude with recommendations for incorporating an equity lens into big data research.


Subject(s)
Big Data , Public Health , Algorithms , Bias , Humans , Machine Learning
13.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 10186-10195, 2022 12.
Article in English | MEDLINE | ID: mdl-34941500

ABSTRACT

The estimation of nested functions (i.e., functions of functions) is one of the central reasons for the success and popularity of machine learning. Today, artificial neural networks are the predominant class of algorithms in this area, known as representational learning. Here, we introduce Representational Gradient Boosting (RGB), a nonparametric algorithm that estimates functions with multi-layer architectures obtained using backpropagation in the space of functions. RGB does not need to assume a functional form in the nodes or output (e.g., linear models or rectified linear units), but rather estimates these transformations. RGB can be seen as an optimized stacking procedure where a meta algorithm learns how to combine different classes of functions (e.g., Neural Networks (NN) and Gradient Boosting (GB)), while building and optimizing them jointly in an attempt to compensate each other's weaknesses. This highlights a stark difference with current approaches to meta-learning that combine models only after they have been built independently. We showed that providing optimized stacking is one of the main advantages of RGB over current approaches. Additionally, due to the nested nature of RGB we also showed how it improves over GB in problems that have several high-order interactions. Finally, we investigate both theoretically and in practice the problem of recovering nested functions and the value of prior knowledge.


Subject(s)
Algorithms , Neural Networks, Computer , Machine Learning
14.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 10236-10243, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34851823

ABSTRACT

Using cross validation to select the best model from a library is standard practice in machine learning. Similarly, meta learning is a widely used technique where models previously developed are combined (mainly linearly) with the expectation of improving performance with respect to individual models. In this article we consider the Conditional Super Learner (CSL), an algorithm that selects the best model candidate from a library of models conditional on the covariates. The CSL expands the idea of using cross validation to select the best model and merges it with meta learning. We propose an optimization algorithm that finds a local minimum to the problem posed and proves that it converges at a rate faster than Op(n-1/4). We offer empirical evidence that: (1) CSL is an excellent candidate to substitute stacking and (2) CLS is suitable for the analysis of Hierarchical problems. Additionally, implications for global interpretability are emphasized.


Subject(s)
Algorithms , Machine Learning
15.
Phys Med ; 87: 11-23, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34091197

ABSTRACT

PURPOSE: A situational awareness Bayesian network (SA-BN) approach is developed to improve physicians' trust in the prediction of radiation outcomes and evaluate its performance for personalized adaptive radiotherapy (pART). METHODS: 118 non-small-cell lung cancer patients with their biophysical features were employed for discovery (n = 68) and validation (n = 50) of radiation outcomes prediction modeling. Patients' important characteristics identified by radiation experts to predict individual's tumor local control (LC) or radiation pneumonitis with grade ≥ 2 (RP2) were incorporated as expert knowledge (EK). Besides generating an EK-based naïve BN (EK-NBN), an SA-BN was developed by incorporating the EK features into pure data-driven BN (PD-BN) methods to improve the credibility of LC or / and RP2 prediction. After using area under the free-response receiver operating characteristics curve (AU-FROC) to assess the joint prediction of these outcomes, their prediction performances were compared with a regression approach based on the expert yielded estimates (EYE) penalty and its variants. RESULTS: In addition to improving the credibility of radiation outcomes prediction, the SA-BN approach outperformed the EYE penalty and its variants in terms of the joint prediction of LC and RP2. The value of AU-FROC improves from 0.70 (95% CI: 0.54-0.76) using EK-NBN, to 0.75 (0.65-0.82) using a variant of EYE penalty, to 0.83 (0.75-0.93) using PD-BN and 0.83 (0.77-0.90) using SA-BN; with similar trends in the validation cohort. CONCLUSIONS: The SA-BN approach can provide an accurate and credible human-machine interface to gain physicians' trust in clinical decision-making, which has the potential to be an important component of pART.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiation Pneumonitis , Awareness , Bayes Theorem , Humans
16.
Pract Radiat Oncol ; 11(6): 515-526, 2021.
Article in English | MEDLINE | ID: mdl-34077809

ABSTRACT

PURPOSE: Salvage high-dose-rate brachytherapy (sHDRBT) for locally recurrent prostate cancer after definitive radiation is associated with biochemical control in approximately half of patients at 3 to 5 years. Given potential toxicity, patient selection is critical. We present our institutional experience with sHDRBT and validate a recursive partitioning machines model for biochemical control. MATERIALS AND METHODS: We performed a retrospective analysis of 129 patients who underwent whole-gland sHDRBT between 1998 and 2016. We evaluated clinical factors associated with biochemical control as well as toxicity. RESULTS: At diagnosis the median prostate-specific antigen (PSA) was 7.77 ng/mL. A majority of patients had T1-2 (73%) and Gleason 6-7 (82%) disease; 71% received external beam radiation therapy (RT) alone, and 22% received permanent prostate implants. The median disease-free interval (DFI) was 56 months, and median presalvage PSA was 4.95 ng/mL. At sHDRBT, 46% had T3 disease and 51% had Gleason 8 to 10 disease. At a median of 68 months after sHDRBT, 3- and 5-year disease-free survival were 85% (95% CI, 79-91) and 71% (95% CI, 62-79), respectively. Median PSA nadir was 0.18 ng/mL, achieved a median of 10 months after sHDRBT. Patients with ≥35%+ cores and a DFI <4.1 years had worse biochemical control (19% vs 50%, P = .02). Local failure (with or without regional/distant failure) was seen in 11% of patients (14/129), and 14 patients (11%) developed acute urinary obstruction requiring Foley placement and 19 patients (15%) developed strictures requiring dilation. CONCLUSIONS: sHDRBT is a reasonable option for patients with locally recurrent prostate cancer after definitive RT. Those with <35%+ cores or an initial DFI of ≥4.1 years may be more likely to achieve long-term disease control after sHDRBT.


Subject(s)
Brachytherapy , Prostatic Neoplasms , Brachytherapy/adverse effects , Humans , Male , Neoplasm Recurrence, Local/radiotherapy , Prostate-Specific Antigen , Prostatic Neoplasms/radiotherapy , Retrospective Studies , Salvage Therapy
17.
Phys Med ; 83: 242-256, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33979715

ABSTRACT

Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence of disruptive technical advances and impressive experimental results, notably in the field of image analysis and processing. In medicine, specialties where images are central, like radiology, pathology or oncology, have seized the opportunity and considerable efforts in research and development have been deployed to transfer the potential of AI to clinical applications. With AI becoming a more mainstream tool for typical medical imaging analysis tasks, such as diagnosis, segmentation, or classification, the key for a safe and efficient use of clinical AI applications relies, in part, on informed practitioners. The aim of this review is to present the basic technological pillars of AI, together with the state-of-the-art machine learning methods and their application to medical imaging. In addition, we discuss the new trends and future research directions. This will help the reader to understand how AI methods are now becoming an ubiquitous tool in any medical image analysis workflow and pave the way for the clinical implementation of AI-based solutions.


Subject(s)
Artificial Intelligence , Radiology , Algorithms , Machine Learning , Technology
19.
Nat Cancer ; 2(7): 709-722, 2021 07.
Article in English | MEDLINE | ID: mdl-35121948

ABSTRACT

Despite widespread adoption of electronic health records (EHRs), most hospitals are not ready to implement data science research in the clinical pipelines. Here, we develop MEDomics, a continuously learning infrastructure through which multimodal health data are systematically organized and data quality is assessed with the goal of applying artificial intelligence for individual prognosis. Using this framework, currently composed of thousands of individuals with cancer and millions of data points over a decade of data recording, we demonstrate prognostic utility of this framework in oncology. As proof of concept, we report an analysis using this infrastructure, which identified the Framingham risk score to be robustly associated with mortality among individuals with early-stage and advanced-stage cancer, a potentially actionable finding from a real-world cohort of individuals with cancer. Finally, we show how natural language processing (NLP) of medical notes could be used to continuously update estimates of prognosis as a given individual's disease course unfolds.


Subject(s)
Electronic Health Records , Neoplasms , Artificial Intelligence , Data Accuracy , Humans , Natural Language Processing , Neoplasms/diagnosis
20.
Med Phys ; 47(12): 6246-6256, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33007112

ABSTRACT

PURPOSE: To perform an in-depth evaluation of current state of the art techniques in training neural networks to identify appropriate approaches in small datasets. METHOD: In total, 112,120 frontal-view X-ray images from the NIH ChestXray14 dataset were used in our analysis. Two tasks were studied: unbalanced multi-label classification of 14 diseases, and binary classification of pneumonia vs non-pneumonia. All datasets were randomly split into training, validation, and testing (70%, 10%, and 20%). Two popular convolution neural networks (CNNs), DensNet121 and ResNet50, were trained using PyTorch. We performed several experiments to test: (a) whether transfer learning using pretrained networks on ImageNet are of value to medical imaging/physics tasks (e.g., predicting toxicity from radiographic images after training on images from the internet), (b) whether using pretrained networks trained on problems that are similar to the target task helps transfer learning (e.g., using X-ray pretrained networks for X-ray target tasks), (c) whether freeze deep layers or change all weights provides an optimal transfer learning strategy, (d) the best strategy for the learning rate policy, and (e) what quantity of data is needed in order to appropriately deploy these various strategies (N = 50 to N = 77 880). RESULTS: In the multi-label problem, DensNet121 needed at least 1600 patients to be comparable to, and 10 000 to outperform, radiomics-based logistic regression. In classifying pneumonia vs non-pneumonia, both CNN and radiomics-based methods performed poorly when N < 2000. For small datasets ( < 2000), however, a significant boost in performance (>15% increase on AUC) comes from a good selection of the transfer learning dataset, dropout, cycling learning rate, and freezing and unfreezing of deep layers as training progresses. In contrast, if sufficient data are available (>35 000), little or no tweaking is needed to obtain impressive performance. While transfer learning using X-ray images from other anatomical sites improves performance, we also observed a similar boost by using pretrained networks from ImageNet. Having source images from the same anatomical site, however, outperforms every other methodology, by up to 15%. In this case, DL models can be trained with as little as N = 50. CONCLUSIONS: While training DL models in small datasets (N < 2000) is challenging, no tweaking is necessary for bigger datasets (N > 35 000). Using transfer learning with images from the same anatomical site can yield remarkable performance in new tasks with as few as N = 50. Surprisingly, we did not find any advantage for using images from other anatomical sites over networks that have been trained using ImageNet. This indicates that features learned may not be as general as currently believed, and performance decays rapidly even by just changing the anatomical site of the images.


Subject(s)
Deep Learning , Humans , Neural Networks, Computer , Physics , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...