Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 4(20): 4335-4343, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36321159

ABSTRACT

Bimetallic Ag-Au/TiO2 nanocomposites were synthesized by sequential photodeposition in order to investigate the effect of surface plasmon resonance (SPR) properties on photocatalytic activity for solar water splitting and methylene blue (MB) degradation. The photodeposition times were optimized for monometallic Ag/TiO2 and Au/TiO2 nanocomposites to yield maximum SPR absorption in the visible range. It was found that the photocatalytic activity of bimetallic Ag-Au/TiO2 nanocomposites outperformed monometallic nanocomposites only when Au was photodeposited first on TiO2, which was attributed to Au-core-Ag-shell nanoparticle morphology. In contrast, reversing the photodeposition order resulted in Ag-Au alloy nanoparticle morphology, which was mediated by the galvanic replacement reaction during the second photodeposition. Alloying was not beneficial to the photocatalytic activity. These results demonstrate alloying during sequential photodeposition providing new insights for the synthesis of TiO2-based photocatalysts with plasmon-enhanced absorption in the visible range.

2.
ACS Omega ; 6(41): 27501-27509, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34693171

ABSTRACT

Titanium dioxide (TiO2) can protect photoelectrochemical (PEC) devices from corrosion, but the fabrication of high-quality TiO2 coatings providing long-term stability has remained challenging. Here, we compare the influence of Si wafer cleaning and postdeposition annealing temperature on the performance of TiO2/n+-Si photoanodes grown by atomic layer deposition (ALD) using tetrakis(dimethylamido)titanium (TDMAT) and H2O as precursors at a growth temperature of 100 °C. We show that removal of native Si oxide before ALD does not improve the TiO2 coating performance under alkaline PEC water splitting conditions if excessive postdeposition annealing is needed to induce crystallization. The as-deposited TiO2 coatings were amorphous and subject to photocorrosion. However, the TiO2 coatings were found to be stable over a time period of 10 h after heat treatment at 400 °C that induced crystallization of amorphous TiO2 into anatase TiO2. No interfacial Si oxide formed during the ALD growth, but during the heat treatment, the thickness of interfacial Si oxide increased to 1.8 nm for all of the samples. Increasing the ALD growth temperature to 150 °C enabled crystallization at 300 °C, which resulted in reduced growth of interfacial Si oxide followed by a 70 mV improvement in the photocurrent onset potential.

3.
J Synchrotron Radiat ; 28(Pt 5): 1620-1630, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34475309

ABSTRACT

FinEstBeAMS (Finnish-Estonian Beamline for Atmospheric and Materials Sciences) is a multidisciplinary beamline constructed at the 1.5 GeV storage ring of the MAX IV synchrotron facility in Lund, Sweden. The beamline covers an extremely wide photon energy range, 4.5-1300 eV, by utilizing a single elliptically polarizing undulator as a radiation source and a single grazing-incidence plane grating monochromator to disperse the radiation. At photon energies below 70 eV the beamline operation relies on the use of optical and thin-film filters to remove higher-order components from the monochromated radiation. This paper discusses the performance of the beamline, examining such characteristics as the quality of the gratings, photon energy calibration, photon energy resolution, available photon flux, polarization quality and focal spot size.

4.
Small ; 17(19): e2100101, 2021 May.
Article in English | MEDLINE | ID: mdl-33792184

ABSTRACT

The doping of halide perovskite nanocrystals (NCs) with manganese cations (Mn2+ ) has recently enabled enhanced stability, novel optical properties, and modulated charge carrier dynamics of the NCs host. However, the influence of Mn doping on the synthetic routes and the band structures of the host has not yet been elucidated. Herein, it is demonstrated that Mn doping promotes a facile, safe, and low-hazard path toward the synthesis of ternary Cs3 Bi2 I9 NCs by effectively inhibiting the impurity phase (i.e., CsI) resulting from the decomposition of the intermediate Cs3 BiI6 product. Furthermore, it is observed that the deepening of the valence band level of the host NCs upon doping at Mn concentration levels varying from 0 to 18.5% (atomic ratio) with respect to the Bi content. As a result, the corresponding Mn-doped NCs solar cells show a higher open-circuit voltage and longer electron lifetime than those employing the undoped perovskite NCs. This work opens new insights on the role of Mn doping in the synthetic route and optoelectronic properties of lead-free halide perovskite NCs for still unexplored applications.

5.
Nanotechnology ; 32(13): 130001, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33276349

ABSTRACT

Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlO x and use of AlN x deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlO x process and more significantly by the AlN x method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlN x passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlN x passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.

6.
Nanomaterials (Basel) ; 10(8)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32784961

ABSTRACT

Titanium dioxide (TiO2) thin films are widely employed for photocatalytic and photovoltaic applications where the long lifetime of charge carriers is a paramount requirement for the device efficiency. To ensure the long lifetime, a high temperature treatment is used which restricts the applicability of TiO2 in devices incorporating organic or polymer components. In this study, we exploited low temperature (100-150 °C) atomic layer deposition (ALD) of 30 nm TiO2 thin films from tetrakis(dimethylamido)titanium. The deposition was followed by a heat treatment in air to find the minimum temperature requirements for the film fabrication without compromising the carrier lifetime. Femto-to nanosecond transient absorption spectroscopy was used to determine the lifetimes, and grazing incidence X-ray diffraction was employed for structural analysis. The optimal result was obtained for the TiO2 thin films grown at 150 °C and heat-treated at as low as 300 °C. The deposited thin films were amorphous and crystallized into anatase phase upon heat treatment at 300-500 °C. The average carrier lifetime for amorphous TiO2 is few picoseconds but increases to >400 ps upon crystallization at 500 °C. The samples deposited at 100 °C were also crystallized as anatase but the carrier lifetime was <100 ps.

7.
Angew Chem Int Ed Engl ; 59(49): 22117-22125, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32816348

ABSTRACT

Colloidal lead-free perovskite nanocrystals have recently received extensive attention because of their facile synthesis, the outstanding size-tunable optoelectronic properties, and less or no toxicity in their commercial applications. Tin (Sn) has so far led to the most efficient lead-free solar cells, yet showing highly unstable characteristics in ambient conditions. Here, we propose the synthesis of all-inorganic mixture Sn-Ge perovskite nanocrystals, demonstrating the role of Ge2+ in stabilizing Sn2+ cation while enhancing the optical and photophysical properties. The partial replacement of Sn atoms by Ge atoms in the nanostructures effectively fills the high density of Sn vacancies, reducing the surface traps and leading to a longer excitonic lifetime and increased photoluminescence quantum yield. The resultant Sn-Ge nanocrystals-based devices show the highest efficiency of 4.9 %, enhanced by nearly 60 % compared to that of pure Sn nanocrystals-based devices.

8.
J Synchrotron Radiat ; 27(Pt 4): 1080-1091, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33566019

ABSTRACT

Since spring 2019 an experimental setup consisting of an electron spectrometer and an ion time-of-flight mass spectrometer for diluted samples has been available for users at the FinEstBeAMS beamline of the MAX IV Laboratory in Lund, Sweden. The setup enables users to study the interaction of atoms, molecules, (molecular) microclusters and nanoparticles with short-wavelength (vacuum ultraviolet and X-ray) synchrotron radiation and to follow the electron and nuclear dynamics induced by this interaction. Test measurements of N2 and thiophene (C4H4S) molecules have demonstrated that the setup can be used for many-particle coincidence spectroscopy. The measurements of the Ar 3p photoelectron spectra by linear horizontal and vertical polarization show that angle-resolved experiments can also be performed. The possibility to compare the electron spectroscopic results of diluted samples with solid targets in the case of Co2O3 and Fe2O3 at the Co and Fe L2,3-absorption edges in the same experimental session is also demonstrated. Because the photon energy range of the FinEstBeAMS beamline extends from 4.4 eV up to 1000 eV, electron, ion and coincidence spectroscopy studies can be executed in a very broad photon energy range.

9.
ACS Appl Mater Interfaces ; 11(3): 2758-2762, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30608653

ABSTRACT

Visually black, electrically leaky, amorphous titania (am-TiO2) thin films were grown by atomic layer deposition (ALD) for photocatalytic applications. Broad spectral absorbance in the visible range and exceptional conductivity are attributed to trapped Ti3+ in the film. Oxidation of Ti3+ upon heat treatment leads to a drop in conductivity, a color change from black to white, and crystallization of am-TiO2. ALD-grown black TiO2, without any heat treatment, is subject to dissolution in alkaline photoelectrochemical conditions. The best photocatalytic activity for solar water splitting is obtained for completely crystalline white TiO2.

10.
Nanoscale Adv ; 1(10): 4025-4040, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-36132092

ABSTRACT

As the Earth's atmosphere contains an abundant amount of water as vapors, a device which can capture a fraction of this water could be a cost-effective and practical way of solving the water crisis. There are many biological surfaces found in nature which display unique wettability due to the presence of hierarchical micro-nanostructures and play a major role in water deposition. Inspired by these biological microstructures, we present a large scale, facile and cost-effective method to fabricate water-harvesting functional surfaces consisting of high-density copper oxide nanoneedles. A controlled chemical oxidation approach on copper surfaces was employed to fabricate nanoneedles with controlled morphology, assisted by bisulfate ion adsorption on the surface. The fabricated surfaces with nanoneedles displayed high wettability and excellent fog harvesting capability. Furthermore, when the fabricated nanoneedles were subjected to hydrophobic coating, these were able to rapidly generate and shed coalesced droplets leading to further increase in fog harvesting efficiency. Overall, ∼99% and ∼150% increase in fog harvesting efficiency was achieved with non-coated and hydrophobic layer coated copper oxide nanoneedle surfaces respectively when compared to the control surfaces. As the transport of the harvested water is very important in any fog collection system, hydrophilic channels inspired by leaf veins were made on the surfaces via a milling technique which allowed an effective and sustainable way to transport the captured water and further enhanced the water collection efficiency by ∼9%. The system presented in this study can provide valuable insights towards the design and fabrication of fog harvesting systems, adaptable to arid or semi-arid environmental conditions.

11.
Chem Mater ; 30(4): 1199-1208, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-30270988

ABSTRACT

Amorphous titanium dioxide (a-TiO2) combined with an electrocatalyst has shown to be a promising coating for stabilizing traditional semiconductor materials used in artificial photosynthesis for efficient photoelectrochemical solar-to-fuel energy conversion. In this study we report a detailed analysis of two methods of modifying an undoped thin film of atomic layer deposited (ALD) a-TiO2 without an electrocatalyst to affect its performance in water splitting reaction as a protective photoelectrode coating. The methods are high-temperature annealing in ultrahigh vacuum and atomic hydrogen exposure. A key feature in both methods is that they preserve the amorphous structure of the film. Special attention is paid to the changes in the molecular and electronic structure of a-TiO2 induced by these treatments. On the basis of the photoelectrochemical results, the a-TiO2 is susceptible to photocorrosion but significant improvement in stability is achieved after heat treatment in vacuum at temperatures above 500 °C. On the other hand, the hydrogen treatment does not increase the stability despite the ostensibly similar reduction of a-TiO2. The surface analysis allows us to interpret the improved stability to the thermally induced formation of O- species within a-TiO2 that are essentially electronic defects in the anionic framework.

12.
Nanotechnology ; 29(18): 185708, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29451126

ABSTRACT

Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

13.
Chempluschem ; 82(5): 705-715, 2017 May.
Article in English | MEDLINE | ID: mdl-31961534

ABSTRACT

Novel monoisomeric perylene imide derivatives with terpyridinyl and pyrrolidinyl substituents were synthesized and deposited onto solid substrates, such as a thin film of Al2 O3 and mesoporous TiO2 nanoparticle layer, by using a simple dip-by-dip method. Arrays of up to 33 layers were built on Al2 O3 . In the case of mesoporous TiO2 , the interstitial volume between the particles was filled up with dye assemblies. Deposition could produce either layers of microcrystals or molecular layers if an appropriate washing procedure was used. The resultant arrays were studied by means of scanning electron microscopy, X-ray photoelectron spectroscopy measurements, and UV/Vis absorption.

14.
Chemphyschem ; 18(1): 64-71, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27805802

ABSTRACT

The preparation of weblike titanium dioxide thin films by atomic layer deposition on cellulose biotemplates is reported. The method produces a TiO2 web, which is flexible and transferable from the deposition substrate to that of the end application. Removal of the cellulose template by calcination converts the amorphous titania to crystalline anatase and gives the structure a hollow morphology. The TiO2 webs are thoroughly characterized using electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy to give new insight into manufacturing of porous titanium dioxide structures by means of template-based methods. Functionality and integrity of the TiO2 hollow weblike thin films were successfully confirmed by applying them as electrodes in dye-sensitized solar cells.

15.
Sci Rep ; 6: 29324, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27381834

ABSTRACT

A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.


Subject(s)
Avidin/metabolism , Biofouling/prevention & control , Biotin/metabolism , Polyethylene Glycols/metabolism , Silanes/metabolism , Stainless Steel/chemistry , Surface Properties , Bacterial Adhesion , Hydrophobic and Hydrophilic Interactions , Protein Binding
16.
Chemistry ; 22(4): 1501-10, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26632758

ABSTRACT

Terpyridine-substituted perylenes containing cyclic anhydrides in the peri position were synthesized. The anhydride group served as an anchor for assembly of the terpyridyl-crowned chromophores as monomolecular layers on metal oxide surfaces. Further coordination with Zn(2+) ions allowed for layer-by-layer formation of supramolecular assemblies of perylene imides on the solid substrates. With properly selected anchor and linker molecules it was possible to build high quality structures of greater than ten successive layers by a simple and straightforward procedure. The prepared films were stable and had a broad spectral coverage and high absorbance. To demonstrate their potential use, the synthesized dyes were employed in solid-state dye-sensitized solar cells, and electron injection from the perylene antennas to titanium dioxide was observed.

17.
Langmuir ; 30(48): 14555-65, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25375206

ABSTRACT

In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for hESC-RPE cells.


Subject(s)
Embryonic Stem Cells/cytology , Epithelial Cells/cytology , Glass/chemistry , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line , Embryonic Stem Cells/drug effects , Epithelial Cells/drug effects , Humans , Photoelectron Spectroscopy , Propylamines , Silanes/chemistry , Surface Properties
18.
Nanotechnology ; 25(43): 435603, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25297847

ABSTRACT

Hybrid organic-inorganic interfaces are the key to functionalization of stainless steel (SS). We present a solution-based deposition method for fabricating uniform bimolecular organosilane monolayers on SS and show that their properties and functionalities can be further developed through site-specific biotinylation. We correlate molecular properties of the interface with its reactivity via surface sensitive synchrotron radiation mediated high-resolution photoelectron spectroscopy (HR-PES) and chemical derivatization (CD), and we demonstrate specific bonding of streptavidin proteins to the hybrid interface. The method facilitates efficient growth of uniform bimolecular organosilane monolayers on SS under ambient conditions without the need to prime the SS surface with vacuum-deposited inorganic buffer layers. The obtained insights into molecular bonding, orientation, and behaviour of surface-confined organofunctional silanes on SS enable a new generic approach to functionalization of SS surfaces with versatile nanomolecular organosilane layers.

SELECTION OF CITATIONS
SEARCH DETAIL