Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemiology ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38567907

ABSTRACT

BACKGROUND: Severe maternal morbidity is a composite measure of serious obstetric complications that is often identified in administrative data using International Classification of Diseases (ICD) diagnosis and procedure codes for a set of 21 indicators. Prior studies of screen-positive cases have demonstrated low predictive value for ICD codes relative to the medical record. To our knowledge, the validity of ICD-10 codes for identifying severe maternal morbidity has not been fully described. METHODS: We estimated the sensitivity, specificity, positive predictive value, and negative predictive value of ICD-10 codes for severe maternal morbidity occurring at delivery, compared with medical record abstraction (gold standard), for 1,000 deliveries that took place during 2016-2018 at a large, public hospital. RESULTS: We identified a total of 67 cases of severe maternal morbidity using the ICD-10 definition, and 74 cases in the medical record. The sensitivity was 26% (95% confidence interval (CI): 16%, 37%), the positive predictive value was 28% (95% CI: 18%, 41%), the specificity was 95% (95% CI: 93%, 96%), and the negative predictive value was 94% (95% CI: 92%, 96%). CONCLUSIONS: The validity of ICD-10 codes for severe maternal morbidity in our high-burden population was poor, suggesting considerable potential for bias.

2.
Neurobiol Dis ; 182: 106136, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37120096

ABSTRACT

Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Animals , Mice , MEF2 Transcription Factors/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Phosphorylation/genetics , Synapses/metabolism , Fragile X Syndrome/genetics , Mice, Knockout
3.
iScience ; 23(5): 101132, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32434143

ABSTRACT

Maintaining a balance between protein degradation and protein synthesis is necessary for neurodevelopment. Although the E3 ubiquitin ligase anaphase promoting complex and its regulatory subunit Cdh1 (Cdh1-APC) has been shown to regulate learning and memory, the underlying mechanisms are unclear. Here, we have identified a role of Cdh1-APC as a regulator of protein synthesis in neurons. Proteomic profiling revealed that Cdh1-APC interacts with known regulators of translation, including stress granule proteins. Inhibition of Cdh1-APC activity caused an increase in stress granule formation that is dependent on fragile X mental retardation protein (FMRP). We propose a model in which Cdh1-APC targets stress granule proteins, such as FMRP, and inhibits the formation of stress granules, leading to protein synthesis. Elucidation of a role for Cdh1-APC in regulation of stress granules and protein synthesis in neurons has implications for how Cdh1-APC can regulate protein-synthesis-dependent synaptic plasticity underlying learning and memory.

4.
Traffic ; 21(7): 454-462, 2020 07.
Article in English | MEDLINE | ID: mdl-32374065

ABSTRACT

RNA granule formation, which can be regulated by RNA-binding proteins (RBPs) such as fragile X mental retardation protein (FMRP), acts as a mechanism to control both the repression and subcellular localization of translation. Dysregulated assembly of RNA granules has been implicated in multiple neurological disorders, such as amyotrophic lateral sclerosis. Thus, it is crucial to understand the cellular pathways impinging upon granule assembly or disassembly. The goal of this review is to summarize recent advances in our understanding of the role of the RBP, FMRP, in translational repression underlying RNA granule dynamics, mRNA transport and localized. We summarize the known mechanisms of translational regulation by FMRP, the role of FMRP in RNA transport granules, fragile X granules and stress granules. Focusing on the emerging link between FMRP and stress granules, we propose a model for how hyperassembly and hypoassembly of RNA granules may contribute to neurological diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Fragile X Mental Retardation Protein , Amyotrophic Lateral Sclerosis/genetics , Cytoplasmic Granules , Fragile X Mental Retardation Protein/genetics , Humans , RNA
5.
Front Mol Biosci ; 7: 6, 2020.
Article in English | MEDLINE | ID: mdl-32118033

ABSTRACT

Fused in sarcoma (FUS), identified as the heterogeneous nuclear ribonuclear protein P2, is expressed in neuronal and non-neuronal tissue, and among other functions, has been implicated in messenger RNA (mRNA) transport and possibly local translation regulation. Although FUS is mainly localized to the nucleus, in the neurons FUS has also been shown to localize to the post-synaptic density, as well as to the pre-synapse. Additionally, the FUS deletion in cultured hippocampal cells results in abnormal spine and dendrite morphology. Thus, FUS may play a role in synaptic function regulation, mRNA localization, and local translation. Many dendritic mRNAs have been shown to form G quadruplex structures in their 3'-untranslated region (3'-UTR). Since FUS contains three arginine-glycine-glycine (RGG) boxes, an RNA binding domain shown to bind with high affinity and specificity to RNA G quadruplex structures, in this study we hypothesized that FUS recognizes these structural elements in its neuronal mRNA targets. Two neuronal mRNAs found in the pre- and post-synapse are the post-synaptic density protein 95 (PSD-95) and Shank1 mRNAs, which encode for proteins involved in synaptic plasticity, maintenance, and function. These mRNAs have been shown to form 3'-UTR G quadruplex structures and were also enriched in FUS hydrogels. In this study, we used native gel electrophoresis and steady-state fluorescence spectroscopy to demonstrate specific nanomolar binding of the FUS C-terminal RGG box and of full-length FUS to the RNA G quadruplex structures formed in the 3'-UTR of PSD-95 and Shank1a mRNAs. These results point toward a novel mechanism by which FUS targets neuronal mRNA and given that these PSD-95 and Shank1 3'-UTR G quadruplex structures are also targeted by the fragile X mental retardation protein (FMRP), they raise the possibility that FUS and FMRP might work together to regulate the translation of these neuronal mRNA targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...