Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34155147

ABSTRACT

Antibody-drug conjugates (ADCs) have emerged as valuable targeted anticancer therapeutics with at least 11 approved therapies and over 80 advancing through clinical trials. Enediyne DNA-damaging payloads represented by the flagship of this family of antitumor agents, N-acetyl calicheamicin [Formula: see text], have a proven success track record. However, they pose a significant synthetic challenge in the development and optimization of linker drugs. We have recently reported a streamlined total synthesis of uncialamycin, another representative of the enediyne class of compounds, with compelling synthetic accessibility. Here we report the synthesis and evaluation of uncialamycin ADCs featuring a variety of cleavable and noncleavable linkers. We have discovered that uncialamycin ADCs display a strong bystander killing effect and are highly selective and cytotoxic in vitro and in vivo.


Subject(s)
Anthraquinones/pharmacology , Bystander Effect/drug effects , Immunoconjugates/pharmacology , Animals , Anthraquinones/chemistry , Cell Death/drug effects , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Mice, Inbred NOD , Mice, SCID , Tumor Burden/drug effects
2.
Bioorg Med Chem Lett ; 30(24): 127640, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33127540

ABSTRACT

PNU-159682 is a highly potent secondary metabolite of nemorubicin belonging to the anthracycline class of natural products. Due to its extremely high potency and only partially understood mechanism of action, it was deemed an interesting starting point for the development of a new suite of linker drugs for antibody drug conjugates (ADCs). Structure activity relationships were explored on the small molecule which led to six linker drugs being developed for conjugation to antibodies. Herein we describe the synthesis of novel PNU-159682 derivatives and the subsequent linker drugs as well as the corresponding biological evaluations of the small molecules and ADCs.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Doxorubicin/analogs & derivatives , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Doxorubicin/chemical synthesis , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...