Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(3): e0301139, 2024.
Article in English | MEDLINE | ID: mdl-38517906

ABSTRACT

Trichoderma uses different molecules to establish communication during its interactions with other organisms, such as effector proteins. Effectors modulate plant physiology to colonize plant roots or improve Trichoderma's mycoparasitic capacity. In the soil, these fungi can establish relationships with plant growth-promoting bacteria (PGPBs), thus affecting their overall benefits on the plant or its fungal prey, and possibly, the role of effector proteins. The aim of this study was to determine the induction of Trichoderma atroviride gene expression coding for effector proteins during the interaction with different PGPBs, Arabidopsis or the phytopathogen Fusarium brachygibbosum, and to determine whether PGPBs potentiates the beneficial effects of T. atroviride. During the interaction with F. brachygibbosum and PGPBs, the effector coding genes epl1, tatrx2 and tacfem1 increased their expression, especially during the consortia with the bacteria. During the interaction of T. atroviride with the plant and PGPBs, the expression of epl1 and tatrx2 increased, mainly with the consortium formed with Pseudomonas fluorescens UM270, Bacillus velezensis AF12, or B. halotolerans AF23. Additionally, the consortium formed by T. atroviride and R. badensis SER3 stimulated A. thaliana PR1:GUS and LOX2:GUS for SA- and JA-mediated defence responses. Finally, the consortium of T. atroviride with SER3 was better at inhibiting pathogen growth, but the consortium of T. atroviride with UM270 was better at promoting Arabidopsis growth. These results showed that the biocontrol capacity and plant growth-promoting traits of Trichoderma spp. can be potentiated by PGPBs by stimulating its effector functions.


Subject(s)
Arabidopsis , Hypocreales , Trichoderma , Antifungal Agents/metabolism , Plant Development , Bacteria , Trichoderma/genetics
2.
Plants (Basel) ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050166

ABSTRACT

N,N-dimethylhexadecylamine (DMHDA) is a bacterial volatile organic compound that affects plant growth and morphogenesis and is considered a cross-kingdom signal molecule. Its bioactivity involves crosstalk with the cytokinin and jasmonic acid (JA) pathways to control stem cell niches and induce iron deficiency adaptation and plant defense. In this study, through genetic analysis, we show that the DMHDA-JA-Ethylene (ET) relations determine the magnitude of the defensive response mounted during the infestation of Arabidopsis plants by the pathogenic fungus Botrytis cinerea. The Arabidopsis mutants defective in the JA receptor CORONATINE INSENSITIVE 1 (coi1-1) showed a more severe infestation when compared to wild-type plants (Col-0) that were partially restored by DMHDA supplements. Moreover, the oversensitivity manifested by ETHYLENE INSENSITIVE 2 (ein2) by B. cinerea infestation could not be reverted by the volatile, suggesting a role for this gene in DMHDA reinforcement of immunity. Growth of Col-0 plants was inhibited by DMHDA, but ein2 did not. Noteworthy, Arabidopsis seeds treated with DMHDA produced more vigorous plants throughout their life cycle. These data are supportive of a scenario where plant perception of a bacterial volatile influences the resistance to a fungal phytopathogen while modulating plant growth.

3.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047208

ABSTRACT

Plants are at risk of attack by various pathogenic organisms. During pathogenesis, microorganisms produce molecules with conserved structures that are recognized by plants that then initiate a defense response. Plants also experience iron deficiency. To address problems caused by iron deficiency, plants use two strategies focused on iron absorption from the rhizosphere. Strategy I is based on rhizosphere acidification and iron reduction, whereas Strategy II is based on iron chelation. Pathogenic defense and iron uptake are not isolated phenomena: the antimicrobial phenols are produced by the plant during defense, chelate and solubilize iron; therefore, the production and secretion of these molecules also increase in response to iron deficiency. In contrast, phytohormone jasmonic acid and salicylic acid that induce pathogen-resistant genes also modulate the expression of genes related to iron uptake. Iron deficiency also induces the expression of defense-related genes. Therefore, in the present review, we address the cross-talk that exists between the defense mechanisms of both Systemic Resistance and Systemic Acquired Resistance pathways and the response to iron deficiency in plants, with particular emphasis on the regulation genetic expression.


Subject(s)
Iron Deficiencies , Plants , Plants/genetics , Plants/metabolism , Salicylic Acid/metabolism , Iron/metabolism , Signal Transduction , Gene Expression Regulation, Plant , Plant Diseases/genetics
4.
Front Microbiol ; 13: 1040932, 2022.
Article in English | MEDLINE | ID: mdl-36386619

ABSTRACT

Quorum sensing (QS) is a bacterial cell-cell communication system with genetically regulated mechanisms dependent on cell density. Canonical QS systems in gram-negative bacteria possess an autoinducer synthase (LuxI family) and a transcriptional regulator (LuxR family) that respond to an autoinducer molecule. In Gram-positive bacteria, the LuxR transcriptional regulators "solo" (not associated with a LuxI homolog) may play key roles in intracellular communication. Arthrobacter sp. UMCV2 is an actinobacterium that promotes plant growth by emitting the volatile organic compound N, N-dimethylhexadecylamine (DMHDA). This compound induces iron deficiency, defense responses in plants, and swarming motility in Arthrobacter sp. UMCV2. In this study, the draft genome of this bacterium was assembled and compared with the genomes of type strains of the Arthrobacter genus, finding that it does not belong to any previously described species. Genome explorations also revealed the presence of 16 luxR-related genes, but no luxI homologs were discovered. Eleven of these sequences possess the LuxR characteristic DNA-binding domain with a helix-turn-helix motif and were designated as auto-inducer-related regulators (AirR). Four sequences possessed LuxR analogous domains and were designated as auto-inducer analogous regulators (AiaR). When swarming motility was induced with DMHDA, eight airR genes and two aiaR genes were upregulated. These results indicate that the expression of multiple luxR-related genes is induced in actinobacteria, such as Arthrobacter sp. UMCV2, by the action of the bacterial biocompound DMHDA when QS behavior is produced.

5.
Protoplasma ; 259(5): 1139-1155, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34792622

ABSTRACT

The interaction of plant roots with bacteria is influenced by chemical signaling, where auxins play a critical role. Auxins exert positive or negative influences on the plant traits responsible of root architecture configuration such as root elongation and branching and root hair formation, but how bacteria that modify the plant auxin response promote or repress growth, as well as root structure, remains unknown. Here, we isolated and identified via molecular and electronic microscopy analysis a Micrococcus luteus LS570 strain as a plant growth promoter that halts primary root elongation in Arabidopsis seedlings and strongly triggers root branching and absorptive potential. The root biomass was exacerbated following root contact with bacterial streaks, and this correlated with inducible expression of auxin-related gene markers DR5:GUS and DR5:GFP. Cellular and structural analyses of root growth zones indicated that the bacterium inhibits both cell division and elongation within primary root tips, disrupting apical dominance, and as a consequence differentiation programs at the pericycle and epidermis, respectively, triggers the formation of longer and denser lateral roots and root hairs. Using Arabidopsis mutants defective on auxin signaling elements, our study uncovers a critical role of the auxin response factors ARF7 and ARF19, and canonical auxin receptors in mediating both the primary root and lateral root response to M. luteus LS570. Our report provides very basic information into how actinobacteria interact with plants and direct evidence that the bacterial genus Micrococcus influences the cellular and physiological plant programs ultimately responsible of biomass partitioning.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Micrococcus luteus/metabolism , Plant Roots/metabolism
6.
Curr Res Microb Sci ; 2: 100028, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34841319

ABSTRACT

The endophytic bacterial diversity of root, stem, and leaf tissues of Mexican husk tomato plants (Physalis ixocarpa) was compared and deciphered, and screened for their plant growth-promoting activity and antagonism against fungal phytopathogens. Total 315 isolates (108 roots, 102 stems, and 105 leaves) were obtained and characterized by 16S ribosomal gene sequencing. The most abundant genera were Bacillus, Microbacterium, Pseudomonas, and Stenotrophomonas. Unique species were found for each tissue analyzed, along with B. thuringiensis, B. toyonensis, Neobacillus drentensis, Paenibacillus castaneae, P. fluorescens, P. poae, and S. maltophilia present throughout the plant. Biodiversity indices did not show significant differences, but root tissues showed the highest abundance of bacterial endophytes. Several isolates showed excellent promotion activities in Physalis ixocarpa seedlings, increasing the length and weight of the root, total biomass, and chlorophyll content. Various isolates also exhibited antagonism against fungal pathogens. Among screened isolates, Neobacillus drentensis CH23 was found in all plant compartments, exhibiting growth-promoting activity and fungal antagonism. Strain CH23 and other endophytes showed the production of indoleacetic acid, siderophores, proteases, and solubilization of phosphates. These results demonstrate that the husk tomato plant endobiome has a high potential as a bioinoculating agent for agriculturally important crops.

7.
Gene Expr Patterns ; 41: 119201, 2021 09.
Article in English | MEDLINE | ID: mdl-34329770

ABSTRACT

N,N-dimethyl-hexadecylamine (DMHDA) is released as part of volatile blends emitted by plant probiotic bacteria and affects root architecture, defense and nutrition of plants. Here, we investigated the changes in gene expression of transcription factors responsible of maintenance of the root stem cell niche and jasmonic acid signaling in Arabidopsis seedlings in response to this volatile. Concentrations of DMHDA that repress primary root growth were found to alter cell size and division augmenting cell tissue layers in the meristem and causing root widening. DMHDA triggered the division of quiescent center cells, which correlated with repression of SHORT ROOT (SHR), SCARECROW (SCR), and PLETHORA 1 (PLT1) proteins and induction of WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor. Interestingly, an activation of the expression of the jasmonic acid-related reporter genes JAZ1/TIFY10A-GFP and JAZ10pro::JAZ10-GFP suggests that the halted growth of the primary root inversely correlated with expression patterns underlying the defense reaction, which may be of adaptive importance to protect roots against biotic stress. Our data help to unravel the gene expression signatures upon sensing of a highly active bacterial volatile in Arabidopsis seedlings.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Amines , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes , Gene Expression , Gene Expression Regulation, Plant , Hydrocarbons , Oxylipins , Plant Roots/metabolism , Stem Cell Niche
8.
Plant Signal Behav ; 16(4): 1879542, 2021 04 03.
Article in English | MEDLINE | ID: mdl-33586610

ABSTRACT

N,N-dimethyl-hexadecylamine (DMHDA) is a volatile organic compound (VOC) produced by some plant growth-promoting rhizobacteria (PGPR), which inhibits the growth of pathogenic fungi and induces iron uptake by roots. In this report, through the application of a wide range of concentrations, we found that DMHDA affects Arabidopsis primary root growth and lateral root formation in a dose-dependent manner where 1 and 2 µM promoted root growth and higher (4-32 µM) concentrations repressed growth. Cytokinin-inducible TCS::GFP and ARR5::uidA gene constructs showed an increased expression in columella cells and root meristem, respectively, at 2 µM DMHDA, but their expression domains strongly diminished at growth repressing treatments. To test if either primary root growth promotion or repression could involve members of the cytokinin receptor family, the growth of WT and double mutant combinations cre1-12 ahk2-2, cre1-12 ahk3-3, and ahk2-2 ahk3-3 was tested in control conditions or supplemented with 2 µM or 16 µM DMHDA. Noteworthy, the root growth promotion disappeared in cre1-12 ahk2-2 and ahk2-2 ahk3-3 combinations, whereas all double mutants had higher repression than the WT at high doses. We further show that DMHDA fails to mimic the effects of ethylene in Arabidopsis seedlings grown in darkness that include an exaggerated apical hook, stem and root shortening, and root hair elongation. Our data help unravel how Arabidopsis senses a growth-modulating bacterial volatile through changes in cytokinin responsiveness.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytokinins/metabolism , Histidine Kinase/metabolism , Methylamines/pharmacology , Plant Roots/growth & development , Signal Transduction , Volatile Organic Compounds/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Reporter , Histidine Kinase/genetics , Mutation/genetics , Plant Roots/drug effects , Plants, Genetically Modified , Signal Transduction/drug effects
9.
Plants (Basel) ; 9(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32422878

ABSTRACT

Plants face a variety of biotic and abiotic stresses including attack by microbial phytopathogens and nutrient deficiencies. Some bacterial volatile organic compounds (VOCs) activate defense and iron-deficiency responses in plants. To establish a relationship between defense and iron deficiency through VOCs, we identified key genes in the defense and iron-deprivation responses of the legume model Medicago truncatula and evaluated the effect of the rhizobacterial VOC N,N-dimethylhexadecylamine (DMHDA) on the gene expression in these pathways by RT-qPCR. DMHDA increased M. truncatula growth 1.5-fold under both iron-sufficient and iron-deficient conditions compared with untreated plants, whereas salicylic acid and jasmonic acid decreased growth. Iron-deficiency induced iron uptake and defense gene expression. Moreover, the effect was greater in combination with DMHDA. Salicylic acid, Pseudomonas syringae, jasmonic acid, and Botrytis cinerea had inhibitory effects on growth and iron response gene expression but activated defense genes. Taken together, our results showed that the VOC DMHDA activates defense and iron-deprivation pathways while inducing a growth promoting effect unlike conventional phytohormones, highlighting that DMHDA does not mimic jasmonic acid but induces an alternative pathway. This is a novel aspect in the complex interactions between biotic and abiotic stresses.

10.
Sci Rep ; 10(1): 8426, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439840

ABSTRACT

Biofertilizer production and application for sustainable agriculture is already a reality. The methods for biofertilizers delivery in crop fields are diverse. Although foliar spray is gaining wide acceptance, little is known about the influence that the biochemical features of leaves have on the microbial colonization. Arthrobacter agilis UMCV2 is a rhizospheric and endophytic bacteria that promotes plant growth and health. In this study, we determined the capacity of the UMCV2 strain to colonize different leaves from Medicago truncatula in a foliar inoculation system. By using two powerful analytical methods based on mass spectrometry, we determined the chemical profile of the leaves in 15-d old plants. The metabolic signatures between the unifoliate leaf (m1) and the metameric units developing above (m2 and m3) were different, and interestingly, the highest colony forming units (CFU) was found in m1. The occurrence of the endophyte strongly affects the sugar composition in m1 and m2 leaves. Our results suggest that A. agilis UMCV2 colonize the leaves under a foliar inoculation system independently of the phenological age of the leaf and it is capable of modulating the carbohydrate metabolism without affecting the rest of the metabolome.


Subject(s)
Arthrobacter/metabolism , Endophytes/metabolism , Medicago truncatula/metabolism , Medicago truncatula/microbiology , Plant Leaves/microbiology , Carbohydrate Metabolism/physiology , Fertilizers/microbiology , Medicago truncatula/growth & development , Plant Leaves/chemistry , Symbiosis/physiology
11.
3 Biotech ; 10(5): 220, 2020 May.
Article in English | MEDLINE | ID: mdl-32355594

ABSTRACT

Here we report the draft genome sequence of bacterial strain CR71, consisting of a single chromosome with 5,914,775 base pairs (bp), 34.7% G + C content, and 5733 protein-coding genes. Phylogenetic analysis indicates that the CR71 strain is affiliated with Bacillus thuringiensis species, with an average nucleotide identity > 96% and genome to genome distance > 70%. The genome of B. thuringiensis strain CR71 contains genes potentially involved in a wide variety of both plant pathogen-antagonistic and plant-growth-promoting activities, such as biofilm production; acetoin, butanediol, and indoleacetic acid (IAA) synthesis; production of quorum-sensing molecules; synthesis of toxins and lytic enzymes; and promotion of tolerance to oxidative, metal, and salt stress. Additionally, antiSMASH analysis revealed a potential synthesis of siderophores and peptide antibiotics. To confirm the in silico data, strain CR71 was inoculated into cucumber plants (Cucumis sativus L.) in a field trial, in which we observed an increase in stem thickness, as well as shoot fresh weight and length. Importantly, compared to un-inoculated control plants, plants inoculated with strain CR71 increased the size/weight ratio of cucumber fruits (34.99%), biovolume index (16.8%), and total fruit yield (34.97%). In conclusion, genome analysis of strain CR71 confirmed multifactorial plant-beneficial mechanisms and the potential of CR71 as an agricultural bio-inoculant.

12.
Folia Microbiol (Praha) ; 65(3): 523-532, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31834593

ABSTRACT

Bacteria have developed different intra- and inter-specific communication mechanisms that involve the production, release, and detection of signaling molecules, because these molecules serve as the autoinducers involved in "quorum sensing" systems. Other communication mechanisms employ volatile signaling molecules that regulate different bacterial processes. The Arthrobacter agilis strain UMCV2 is a plant growth promoting actinobacterium, which induces plant growth and inhibits phytopathogenic fungi by emitting the dimethylhexadecylamine (DMHDA). However, little is known about the effect of this volatile compound on A. agilis UMCV2 itself, as well as on other bacteria. By exposing A. agilis UMCV2 and bacteria of the genus Bacillus and Pseudomonas to different concentrations of DMHDA, this study showed the dose-dependent effects of DMHDA on A. agilis UMCV2 growth, cellular viability, swarming motility, and expression of marker genes of the flagellar apparatus of bacteria. DMHDA was found to also modulate swarming motility of Bacillus sp. ZAP018 and P. fluorescens UM270, but not that of P. aeruginosa PA01. These data indicate that DMHDA is involved in both intra- and inter-specific bacterial interaction.


Subject(s)
Arthrobacter/drug effects , Arthrobacter/growth & development , Methylamines/pharmacology , Quorum Sensing/drug effects , Bacillus/drug effects , Bacillus/growth & development , Microbial Interactions/drug effects , Movement/drug effects , Pseudomonas/drug effects , Pseudomonas/growth & development , Volatile Organic Compounds/pharmacology
13.
Molecules ; 24(16)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434211

ABSTRACT

Iron is an essential plant micronutrient. It is a component of numerous proteins and participates in cell redox reactions; iron deficiency results in a reduction in nutritional quality and crop yields. Volatiles from the rhizobacterium Arthrobacter agilis UMCV2 induce iron acquisition mechanisms in plants. However, it is not known whether microbial volatiles modulate other metabolic plant stress responses to reduce the negative effect of iron deficiency. Mass spectrometry has great potential to analyze metabolite alterations in plants exposed to biotic and abiotic factors. Direct liquid introduction-electrospray-mass spectrometry was used to study the metabolite profile in Medicago truncatula due to iron deficiency, and in response to microbial volatiles. The putatively identified compounds belonged to different classes, including pigments, terpenes, flavonoids, and brassinosteroids, which have been associated with defense responses against abiotic stress. Notably, the levels of these compounds increased in the presence of the rhizobacterium. In particular, the analysis of brassinolide by gas chromatography in tandem with mass spectrometry showed that the phytohormone increased ten times in plants grown under iron-deficient growth conditions and exposed to microbial volatiles. In this mass spectrometry-based study, we provide new evidence on the role of A. agilis UMCV2 in the modulation of certain compounds involved in stress tolerance in M. truncatula.


Subject(s)
Arthrobacter/metabolism , Brassinosteroids/metabolism , Iron/metabolism , Medicago truncatula/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Volatile Organic Compounds/pharmacology , Agricultural Inoculants , Brassinosteroids/analysis , Cluster Analysis , Medicago truncatula/drug effects , Medicago truncatula/growth & development , Models, Biological , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Stress, Physiological
14.
Protoplasma ; 256(3): 643-654, 2019 May.
Article in English | MEDLINE | ID: mdl-30382422

ABSTRACT

Chemical communication underlies major adaptive traits in plants and shapes the root microbiome. An increasing number of diffusible and/or volatile organic compounds released by bacteria have been identified, which play phytostimulant or protective functions, including dimethyl-hexa-decylamine (DMHDA), a volatile biosynthesized by Arthrobacter agilis UMCV2 that induces jasmonic acid (JA) signaling in Arabidopsis. Here, he found that the growth repressing effects of both DMHDA and JA are antagonized by kinetin and correlated with an inhibition of cytokinin-related ARR5::GUS and TCS::GFP expression in Arabidopsis primary roots. Moreover, we demonstrate that shoot supplementation of JA triggers JAZ1 expression both locally and systemically and represses cytokinin-dependent promoter activity in roots. A similar effect was observed after cotyledon wounding, in which an increase of JA-inducible LOX2:GUS expression represses root growth, which correlates with the loss of TCS::GFP detection at the very root tip. Our data demonstrate that the bacterial volatile DMHDA crosstalks with cytokinin signaling and reveals the downstream antagonistic interaction between JA and cytokinin in controlling root growth.


Subject(s)
Arabidopsis/metabolism , Bacteria/metabolism , Cyclopentanes/metabolism , Cytokinins/metabolism , Methylamines/metabolism , Oxylipins/metabolism , Plant Roots/growth & development , Seedlings/growth & development , Volatile Organic Compounds/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Cotyledon/drug effects , Cotyledon/metabolism , Gene Expression Regulation, Plant/drug effects , Kinetin/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Stems/drug effects , Plant Stems/metabolism , Promoter Regions, Genetic/genetics , Seedlings/drug effects , Seedlings/metabolism , Signal Transduction/drug effects
15.
Plant Mol Biol ; 96(3): 291-304, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29330694

ABSTRACT

KEY MESSAGE: Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits. Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.


Subject(s)
Bacterial Physiological Phenomena , Cation Transport Proteins/genetics , Immunity, Innate/genetics , Plant Exudates/metabolism , Plant Roots/metabolism , Sorghum/metabolism , Volatile Organic Compounds/pharmacology , Bacteria/genetics , Bacteria/immunology , Gene Expression Regulation, Plant , Ion Transport , Iron/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/microbiology , Rhizosphere , Signal Transduction/drug effects , Sorghum/drug effects , Sorghum/genetics , Sorghum/microbiology
16.
Electron. j. biotechnol ; 31: 48-56, Jan. 2018. ilus, tab
Article in English | LILACS | ID: biblio-1022268

ABSTRACT

Microbial mats are horizontally stratified microbial communities, exhibiting a structure defined by physiochemical gradients, which models microbial diversity, physiological activities, and their dynamics as a whole system. These ecosystems are commonly associated with aquatic habitats, including hot springs, hypersaline ponds, and intertidal coastal zones and oligotrophic environments, all of them harbour phototrophic mats and other environments such as acidic hot springs or acid mine drainage harbour non-photosynthetic mats. This review analyses the complex structure, diversity, and interactions between the microorganisms that form the framework of different types of microbial mats located around the globe. Furthermore, the many tools that allow studying microbial mats in depth and their potential biotechnological applications are discussed.


Subject(s)
Bacteria , Biotechnology , Biodiversity , Microbiota
17.
Plant Signal Behav ; 12(12): e1404218, 2017 12 02.
Article in English | MEDLINE | ID: mdl-29125418

ABSTRACT

Plant growth and development are influenced by the interactions with other organisms including bacteria, fungi, herbivores and neighboring plants. Plant density influences the phase transitions during the entire life cycle and root architecture through a mechanism involving auxin and MEDIATOR 25 in Arabidopsis thaliana, but the nature of the signals that are perceived in response to increasing number of neighbors remains elusive. Here, we report that plant-plant perception can occur distantly, since root growth and auxin response in Arabidopsis seedlings grown at high plant density into half-divided Petri plates, decreased both primary root growth and lateral root formation in comparison with single plants grown alone, which correlates with reduced auxin response at the primary root tip. It is possible that a diffusible, yet unidentified volatile can be perceived by neighbors to synchronize physiological and developmental behavior.


Subject(s)
Arabidopsis/physiology , Signal Transduction , Arabidopsis/drug effects , Environment , Gene Expression Regulation, Plant/drug effects , Genes, Reporter , Indoleacetic Acids/pharmacology , Models, Biological , Plant Roots/drug effects , Plant Roots/growth & development , Plants, Genetically Modified , Signal Transduction/drug effects
18.
Plant Cell Environ ; 40(9): 1887-1899, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28556372

ABSTRACT

Transcriptional regulation of gene expression influences plant growth, environmental interactions and plant-plant communication. Here, we report that population density is a key factor for plant productivity and a major root architectural determinant in Arabidopsis thaliana. When grown in soil at varied densities from 1 to 32 plants, high number of individuals decreased stem growth and accelerated senescence, which negatively correlated with total plant biomass and seed production at the completion of the life cycle. Root morphogenesis was also a major trait modulated by plant density, because an increasing number of individuals grown in vitro showed repression of primary root growth, lateral root formation and root hair development while affecting auxin-regulated gene expression and the levels of auxin transporters PIN1 and PIN2. We also found that mutation of the Mediator complex subunit PFT1/MED25 renders plants insensitive to high density-modulated root traits. Our results suggest that plant density is critical for phase transitions, productivity and root system architecture and reveal a role of Mediator in self-plant recognition.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Edible Grain/growth & development , Indoleacetic Acids/metabolism , Nuclear Proteins/metabolism , Plant Roots/anatomy & histology , Signal Transduction , Arabidopsis/drug effects , Arabidopsis/metabolism , DNA-Binding Proteins , Edible Grain/drug effects , Fruit/drug effects , Fruit/growth & development , Indoleacetic Acids/pharmacology , Plant Roots/drug effects , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Stems/anatomy & histology , Plant Stems/drug effects , Plant Stems/growth & development , Seedlings/drug effects , Seedlings/metabolism , Seeds/drug effects , Seeds/growth & development
19.
Protoplasma ; 254(6): 2201-2213, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28405774

ABSTRACT

Plant growth-promoting rhizobacteria stimulate plant growth and development via different mechanisms. In this study, we characterized the effect of volatiles from Bacillus methylotrophicus M4-96 isolated from the maize rhizosphere on root and shoot development, and auxin homeostasis in Arabidopsis thaliana. Phytostimulation occurred after 4 days of interaction between M4-96 and Arabidopsis grown on opposite sides of divided Petri plates, as revealed by enhanced primary root growth, root branching, leaf formation, and shoot biomass accumulation. Analysis of indole-3-acetic acid content revealed two- and threefold higher accumulation in the shoot and root of bacterized seedlings, respectively, compared to uninoculated plants, which was correlated with increased expression of the auxin response marker DR5::GUS. The auxin transport inhibitor 1-naphthylphthalamic acid inhibited primary root growth and lateral root formation in axenically grown seedlings and antagonized the plant growth-promoting effects of M4-96. Analysis of bacterial volatile compounds revealed the presence of four classes of compounds, including ten ketones, eight alcohols, one aldehyde, and two hydrocarbons. However, the abundance of ketones and alcohols represented 88.73 and 8.05%, respectively, of all airborne signals detected, with acetoin being the main compound produced. Application of acetoin had a different effect from application of volatiles, suggesting that either the entire pool or acetoin acting in concert with another unidentified compound underlies the strong phytostimulatory response. Taken together, our results show that B. methylotrophicus M4-96 generates bioactive volatiles that increase the active auxin pool of plants, stimulate the growth and formation of new organs, and reprogram root morphogenesis.


Subject(s)
Arabidopsis/growth & development , Bacillus/physiology , Zea mays/microbiology , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacillus/isolation & purification , Gene Expression , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Rhizome/growth & development , Rhizome/metabolism , Rhizome/microbiology , Volatile Organic Compounds/metabolism
20.
Protoplasma ; 254(3): 1399-1410, 2017 May.
Article in English | MEDLINE | ID: mdl-27696021

ABSTRACT

Plant growth-promoting rhizobacteria are natural inhabitants of roots, colonize diverse monocot and dicot species, and affect several functional traits such as root architecture, adaptation to adverse environments, and protect plants from pathogens. N,N-dimethyl-hexadecylamine (C16-DMA) is a rhizobacterial amino lipid that modulates the postembryonic development of several plants, likely as part of volatile blends. In this work, we evaluated the bioactivity of C16-DMA and other related N,N-dimethyl-amines with varied length and found that inhibition of primary root growth was related to the length of the acyl chain. C16-DMA inhibited primary root growth affecting cell division and elongation, while promoting lateral root formation and root hair growth and density in Arabidopsis thaliana (Arabidopsis) wild-type (WT) seedlings. Interestingly, C16-DMA induced the expression of the jasmonic acid (JA)-responsive gene marker pLOX2:uidA, while JA-related mutants jar1, coi1-1, and myc2 affected on JA biosynthesis and perception, respectively, are compromised in C16-DMA responses. Comparison of auxin-regulated gene expression, root architectural changes in WT, and auxin-related mutants aux1-7, tir1/afb2/afb3, and arf7-1/arf19-1 to C16-DMA shows that the C16-DMA effects occur independently of auxin signaling. Together, these results reveal a novel class of aminolipids modulating root organogenesis via crosstalk with the JA signaling pathway.


Subject(s)
Arabidopsis/metabolism , Cyclopentanes/metabolism , Methylamines/pharmacology , Morphogenesis/drug effects , Oxylipins/metabolism , Plant Roots/growth & development , Arabidopsis/growth & development , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Division/drug effects , Indoleacetic Acids/metabolism , Lipoxygenases/biosynthesis , Methylamines/chemistry , Methylamines/metabolism , Nucleotidyltransferases/metabolism , Plant Roots/cytology , Plant Roots/microbiology , Seedlings/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...