Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2634, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528030

ABSTRACT

Real-time lab analysis is needed to support clinical decision making and research on human missions to the Moon and Mars. Powerful laboratory instruments, such as flow cytometers, are generally too cumbersome for spaceflight. Here, we show that scant test samples can be measured in microgravity, by a trained astronaut, using a miniature cytometry-based analyzer, the rHEALTH ONE, modified specifically for spaceflight. The base device addresses critical spaceflight requirements including minimal resource utilization and alignment-free optics for surviving rocket launch. To fully enable reduced gravity operation onboard the space station, we incorporated bubble-free fluidics, electromagnetic shielding, and gravity-independent sample introduction. We show microvolume flow cytometry from 10 µL sample drops, with data from five simultaneous channels using 10 µs bin intervals during each sample run, yielding an average of 72 million raw data points in approximately 2 min. We demonstrate the device measures each test sample repeatably, including correct identification of a sample that degraded in transit to the International Space Station. This approach can be utilized to further our understanding of spaceflight biology and provide immediate, actionable diagnostic information for management of astronaut health without the need for Earth-dependent analysis.


Subject(s)
Space Flight , Weightlessness , Humans , Flow Cytometry , Moon
2.
Life Sci Space Res (Amst) ; 31: 29-33, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34689947

ABSTRACT

During long duration orbital space missions, astronauts experience immune system dysregulation, the persistent reactivation of latent herpesviruses, and some degree of clinical incidence. During planned NASA 'Artemis' deep space missions the stressors that cause this phenomenon will increase, while clinical care capability will likely be reduced. There is currently minimal clinical laboratory capability aboard the International Space Station (ISS). The ability to monitor the white blood cell count (WBC) and differential during spaceflight has been an unmet NASA medical requirement, primarily due to a lack of capable hardware. We performed ground and flight validation of a device designed to monitor WBC and differential within minutes from a fingerstick blood sample. This device is miniaturized, robust, and generally compatible with microgravity operations. Ground testing for spaceflight consisted of vibration tolerance, power/battery and interface requirements, electromagnetic interference (EMI), and basic evaluation of sample preparation and operations in the context of spaceflight constraints. The in-flight validation performed aboard the ISS by two astronauts included assessment of three levels of control solution (blood) samples as well as a real time analysis of a fingerstick blood sample by one of the crewmembers. Flight and ground testing of the same lot of control solutions yielded similar total WBC values. There was some select discrepancy between flight and ground data for the differential analysis. However, the data suggest that this issue is due to compromise of the control solutions as a result of storage length before flight operations, and not due to a microgravity-associated issue with instrument performance. This evaluation also yielded lessons learned regarding crewmember training for technique-sensitive small-volume biosample collection and handling in microgravity. The fingerstick analysis was successful and was the first real-time hematology assessment performed during spaceflight. This device may provide an in-mission monitoring capability for astronauts thereby assisting Flight Surgeons and the crew medical officer during both orbital and deep space missions.


Subject(s)
Space Flight , Weightlessness , Astronauts , Humans , Point-of-Care Systems , Technology , Weightlessness/adverse effects
3.
Lab Chip ; 21(10): 1843-1865, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33881041

ABSTRACT

Anemia, characterized by low blood hemoglobin level, affects about 25% of the world's population with the heaviest burden borne by women and children. Anemia leads to impaired cognitive development in children, as well as high morbidity and early mortality among sufferers. Anemia can be caused by nutritional deficiencies, oncologic treatments and diseases, and infections such as malaria, as well as inherited hemoglobin or red cell disorders. Effective treatments are available for anemia upon early detection and the treatment method is highly dependent on the cause of anemia. There is a need for point-of-care (POC) screening, early diagnosis, and monitoring of anemia, which is currently not widely accessible due to technical challenges and cost, especially in low- and middle-income countries where anemia is most prevalent. This review first introduces the evolution of anemia detection methods followed by their implementation in current commercially available POC anemia diagnostic devices. Then, emerging POC anemia detection technologies leveraging new methods are reviewed. Finally, we highlight the future trends of integrating anemia detection with the diagnosis of relevant underlying disorders to accurately identify specific root causes and to facilitate personalized treatment and care.


Subject(s)
Anemia , Point-of-Care Systems , Anemia/diagnosis , Hemoglobins/analysis , Humans , Mass Screening
SELECTION OF CITATIONS
SEARCH DETAIL
...