Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 344: 123295, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38184152

ABSTRACT

Soils and dusts can act as sinks for semivolatile lipophilic organic compounds and children ingest relatively large amounts of both soils and dusts. Following intake, sorbed chemicals may desorb (mobilize) and become available for intestinal absorption (bioaccessible). When chemicals are not degraded in the digestive tract, mobilization can approximate bioaccessibility. Alternatively, when gastrointestinal degradation of mobilized chemicals does occur, it can be useful to separate mobilization from bioaccessibility. In this study we used synthetic digestive fluids in a sequential, three-compartment (saliva, gastric, and intestinal) in vitro assay to construct mobilization and bioaccessibility models for 16 pesticides (log Kow 2.5-6.8) sorbed to 32 characterized soils and house dusts. To address the potential loss of mobilized pesticides due to absorption, the assays were repeated using a solid phase sorbent (tenax) added to the digestive fluid immediately after addition of the intestinal fluid components. We found that pesticide mobilization was predicted by pesticide log Kow and the carbon content of the soils and dusts. Pesticide loss measurably reduced the bioaccessibility of most pesticides, and bioaccessibility was largely predicted by log Kow and pesticide loss rate constants. Introduction of the sink increased mobilization by x̄ = 4 ± 6% (soil) and x̄ = 9 ± 7% (dust) while bioaccessibility increases were x̄ = 41 ± 21% (soil) and x̄ = 24 ± 12% (dust). The physicochemical properties of the soils, dusts, and pesticides used in this study successfully predicted the in vitro mobilization and bioaccessibility of the pesticides. This suggests that modeling of pesticide mobilization and bioaccessibility could reduce uncertainty in exposure and risk assessments.


Subject(s)
Pesticides , Soil Pollutants , Child , Humans , Dust/analysis , Soil/chemistry , Soil Pollutants/analysis , Eating , Biological Availability
2.
Toxicol Sci ; 197(1): 95-103, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37740396

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are regularly found in soils and dusts, both of which can be consumed by children at relatively high amounts. However, there is little data available to model the bioaccessibility of PFAS in soils and dusts when consumed or to describe how the physiochemical properties of PFAS and soils/dusts might affect bioaccessibility of these chemicals. Because bioaccessibility is an important consideration in estimating absorbed dose for exposure and risk assessments, in the current study, in vitro assays were used to determine bioaccessibility of 14 PFAS in 33 sets of soils and dusts. Bioaccessibility assays were conducted with and without a sink, which was used to account for the removal of PFAS due to their movement across the human intestine. Multiple linear regression with backward elimination showed that a segmented model using PFAS chain length, number of branches, and percent total organic carbon explained 78.0%-88.9% of the variability in PFAS bioaccessibility. In general, PFAS had significantly greater bioaccessibility in soils relative to dusts and the addition of a sink increased bioaccessibility in the test system by as much as 10.8% for soils and 20.3% for dusts. The results from this study indicate that PFAS bioaccessibility in soils and dusts can be predicted using a limited set of physical chemical characteristics and could be used to inform risk assessment models.


Subject(s)
Fluorocarbons , Soil Pollutants , Child , Humans , Dust/analysis , Soil Pollutants/toxicity , Soil/chemistry , Biological Availability , Eating
SELECTION OF CITATIONS
SEARCH DETAIL