Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Mol Diagn ; 24(8): 867-877, 2022 08.
Article in English | MEDLINE | ID: mdl-35934321

ABSTRACT

Detection of serum embryonic miRNAs miR-371a-3p and miR-372-3p has been proposed to aid in diagnosis, prognosis, and management of patients with testicular germ cell tumors (GCTs). This study describes the analytical validation and performance of a laboratory-developed test to detect these miRNA targets by stem loop real-time quantitative RT-PCR (RT-qPCR) in serum from patients with GCTs. The assay was standardized using an exogenous spike-in control of nonhuman miRNA from Caenorhabditis elegans (cel-miR-39-3p) to assess extraction efficiency, and an endogenous housekeeping miRNA, miR-30b-5p, to control for miRNA normalization. miRNA results were expressed as relative expression level, using the comparative threshold cycle method (2ΔΔCT). Analytical sensitivity of miR-371a-3p and miR-372-3p was 12.5 and 1.25 copies/µL, respectively. Clinical accuracy was evaluated using GCT patients with (n = 34) and without (n = 17) active disease. Positive/negative cutoffs and indeterminate findings were established on the basis of results from healthy volunteers (n = 25) and assay precision. miR-371a-3p and miR-372-3p exhibited a sensitivity of 81.8% and 87.5%, respectively, and a specificity of 100% and 94%, respectively, and an area under the receiver operating characteristic curve of 0.93 and 0.95, respectively. Taken together, RT-qPCR testing for serum miR-371a-3p and miR-372-3p represents a robust, sensitive, and specific clinical assay to aid in the clinical management of patients with GCT.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Biomarkers, Tumor/genetics , Humans , Laboratories, Clinical , Male , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/genetics , Testicular Neoplasms
2.
Front Immunol ; 12: 716361, 2021.
Article in English | MEDLINE | ID: mdl-34491250

ABSTRACT

Background: COVID-19 pathology is associated with exuberant inflammation, vascular damage, and activation of coagulation. In addition, complement activation has been described and is linked to disease pathology. However, few studies have been conducted in cancer patients. Objective: This study examined complement activation in response to COVID-19 in the setting of cancer associated thromboinflammation. Methods: Markers of complement activation (C3a, C5a, sC5b-9) and complement inhibitors (Factor H, C1-Inhibitor) were evaluated in plasma of cancer patients with (n=43) and without (n=43) COVID-19 and stratified based on elevated plasma D-dimer levels (>1.0 µg/ml FEU). Markers of vascular endothelial cell dysfunction and platelet activation (ICAM-1, thrombomodulin, P-selectin) as well as systemic inflammation (pentraxin-3, serum amyloid A, soluble urokinase plasminogen activator receptor) were analyzed to further evaluate the inflammatory response. Results: Increases in circulating markers of endothelial cell dysfunction, platelet activation, and systemic inflammation were noted in cancer patients with COVID-19. In contrast, complement activation increased in cancer patients with COVID-19 and elevated D-dimers. This was accompanied by decreased C1-Inhibitor levels in patients with D-dimers > 5 ug/ml FEU. Conclusion: Complement activation in cancer patients with COVID-19 is significantly increased in the setting of thromboinflammation. These findings support a link between coagulation and complement cascades in the setting of inflammation.


Subject(s)
COVID-19/immunology , Complement Activation/immunology , Inflammation/immunology , Neoplasms/immunology , SARS-CoV-2/immunology , Thrombosis/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/virology , Complement Inactivating Agents/blood , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Inflammation/blood , Male , Middle Aged , Neoplasms/blood , Platelet Activation/immunology , Retrospective Studies , SARS-CoV-2/physiology , Thrombosis/blood , Young Adult
3.
Front Immunol ; 11: 583853, 2020.
Article in English | MEDLINE | ID: mdl-33117397

ABSTRACT

Genetic deficiency in C1q is a strong susceptibility factor for systemic lupus erythematosus (SLE). There are two major hypotheses that potentially explain the role of C1q in SLE. The first postulates that C1q deficiency abrogates apoptotic cell clearance, leading to persistently high loads of potentially immunogenic self-antigens that trigger autoimmune responses. While C1q undoubtedly plays an important role in apoptotic clearance, an essential biological process such as removal of self- waste is so critical for host survival that multiple ligand-receptor combinations do fortunately exist to ensure that proper disposal of apoptotic debris is accomplished even in the absence of C1q. The second hypothesis is based on the observation that locally synthesized C1q plays a critical role in regulating the earliest stages of monocyte to dendritic cell (DC) differentiation and function. Indeed, circulating C1q has been shown to keep monocytes in a pre-dendritic state by silencing key molecular players and ensuring that unwarranted DC-driven immune responses do not occur. Monocytes are also able to display macromolecular C1 on their surface, representing a novel mechanism for the recognition of circulating "danger." Translation of this danger signal in turn, provides the requisite "license" to trigger a differentiation pathway that leads to adaptive immune response. Based on this evidence, the second hypothesis proposes that deficiency in C1q dysregulates monocyte-to-DC differentiation and causes inefficient or defective maintenance of self-tolerance. The fact that C1q receptors (cC1qR and gC1qR) are also expressed on the surface of both monocytes and DCs, suggests that C1q/C1qR may regulate DC differentiation and function through specific cell-signaling pathways. While their primary ligand is C1q, C1qRs can also independently recognize a vast array of plasma proteins as well as pathogen-associated molecular ligands, indicating that these molecules may collaborate in antigen recognition and processing, and thus regulate DC-differentiation. This review will therefore focus on the role of C1q and C1qRs in SLE and explore the gC1qR/C1q axis as a potential target for therapy.


Subject(s)
Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/therapy , Animals , Cell Differentiation/immunology , Complement C1q/immunology , Dendritic Cells/immunology , Humans , Immune Tolerance/immunology , Membrane Glycoproteins/immunology , Monocytes/immunology , Receptors, Complement/immunology , Signal Transduction/immunology
4.
Mol Immunol ; 74: 18-26, 2016 06.
Article in English | MEDLINE | ID: mdl-27111569

ABSTRACT

A substantial body of evidence accumulated over the past 20 years supports the concept that gC1qR is a major pathogen-associated pattern recognition receptor (PRR). This conclusion is based on the fact that, a wide range of bacterial and viral ligands are able to exploit gC1qR to either suppress the host's immune response and thus enhance their survival, or to gain access into cells to initiate disease. Of the extensive array of viral ligands that have affinity for gC1qR, the HIV-1 envelope glycoprotein gp41, and the core protein of hepatitis C virus (HCV) are of major interest as they are known to contribute to the high morbidity and mortality caused by these pathogens. While the HCV core protein binds gC1qR and suppresses T cell proliferation resulting in a significantly diminished immune response, the gp41 employs gC1qR to induce the surface expression of the NK cell ligand, NKp44L, on uninfected CD4(+) T cells, thereby rendering them susceptible to autologous destruction by NKp44 receptor expressing NK cells. Because of the potential for the design of peptide-based or antibody-based therapeutic options, the present studies were undertaken to define the gC1qR interaction sites for these pathogen-associated molecular ligands. Employing a solid phase microplate-binding assay, we examined the binding of each viral ligand to wild type gC1qR and 11 gC1qR deletion mutants. The results obtained from these studies have identified two major HCV core protein sites on a domain of gC1qR comprising of residues 144-148 and 196-202. Domain 196-202 in turn, is located in the last half of the larger gC1qR segment encoded by exons IV-VI (residues 159-282), which was proposed previously to contain the site for HCV core protein. The major gC1qR site for gp41 on the other hand, was found to be in a highly conserved region encoded by exon IV and comprises of residues 174-180. Interestingly, gC1qR residues 174-180 also constitute the cell surface-binding site for soluble gC1qR (sgC1qR), which can bind to the cell surface in an autocrine/paracrine manner via surface expressed fibrinogen or other membrane molecules. The identification of the sites for these viral ligands should therefore provide additional targets for the design of peptide-based or antigen-based therapeutic strategies.


Subject(s)
Carrier Proteins/chemistry , HIV Envelope Protein gp41/immunology , Mitochondrial Proteins/chemistry , Receptors, Pattern Recognition/chemistry , Viral Core Proteins/immunology , Binding Sites/immunology , CD4-Positive T-Lymphocytes/immunology , Carrier Proteins/immunology , Humans , Mitochondrial Proteins/immunology , Monocytes/immunology , Receptors, Pattern Recognition/immunology , U937 Cells
5.
Front Immunol ; 5: 278, 2014.
Article in English | MEDLINE | ID: mdl-25018754

ABSTRACT

The ability of circulating blood monocytes to express C1q receptors (cC1qR and gC1qR) as well as to synthesize and secrete the classical pathway proteins C1q, C1r, and C1s and their regulator, C1-INH is very well established. What is intriguing, however, is that, in addition to secretion of the individual C1 proteins monocytes are also able to display macromolecular C1 on their surface in a manner that is stable and functional. The cell surface C1 complex is presumably formed by a Ca(2+)-dependent association of the C1r2⋅C1s2 tetramer to C1q, which in turn is anchored via a membrane-binding domain located in the N-terminus of its A-chain as shown previously. Monocytes, which circulate in the blood for 1-3 days before they move into tissues throughout the body, not only serve as precursors of macrophages and dendritic cells (DCs), but also fulfill three main functions in the immune system: phagocytosis, antigen presentation, and cytokine production. Since the globular heads of C1q within the membrane associated C1 are displayed outwardly, we hypothesize that their main function - especially in circulating monocytes - is to recognize and capture circulating immune complexes or pathogen-associated molecular patterns in the blood. This in turn may give crucial signal, which drives the monocytes to migrate into tissues, differentiate into macrophages or DCs, and initiate the process of antigen elimination. Unoccupied C1q on the other hand may serve to keep monocytes in a pre-dendritic phenotype by silencing key molecular players thus ensuring that unwarranted DC-driven immune response does not occur. In this paper, we will discuss the role of monocyte/DC-associated C1q receptors, macromolecular C1 as well as secreted C1q in both innate and acquired immune responses.

6.
J Immunol ; 192(1): 377-84, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24319267

ABSTRACT

Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein-coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1ß. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174-180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37 °C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174-180 and 154-162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R.


Subject(s)
Autocrine Communication , Carrier Proteins/metabolism , Endothelial Cells/metabolism , Mitochondrial Proteins/metabolism , Receptor, Bradykinin B1/metabolism , Signal Transduction , Autocrine Communication/drug effects , Binding Sites , Carrier Proteins/chemistry , Carrier Proteins/pharmacology , Cell Line , Cell Membrane/metabolism , Endothelial Cells/drug effects , Fibrinogen/metabolism , Gene Expression Regulation/drug effects , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Receptor, Bradykinin B1/genetics , Signal Transduction/drug effects
7.
Adv Exp Med Biol ; 735: 97-110, 2013.
Article in English | MEDLINE | ID: mdl-23402021

ABSTRACT

Abstract The receptor for the globular heads of C1q, gC1qR/p33, is a widely expressed cellular protein, which binds to diverse ligands including plasma proteins, cellular proteins, and microbial ligands. In addition to C1q, gC1qR also binds high molecular weight kininogen (HK), which also has two other cell surface sites, namely, cytokeratin 1 and urokinase plasminogen activator receptor (uPAR). On endothelial cells (ECs), the three molecules form two closely associated bimolecular complexes of gC1qR/cytokeratin 1 and uPAR/cytokeratin 1. However, by virtue of its high affinity for HK, gC1qR plays a central role in the assembly of the kallikrein-kinin system, leading to the generation of bradykinin (BK). BK in turn is largely responsible for the vascular leakage and associated inflammation seen in angioedema patients. Therefore, blockade of gC1qR by inhibitory peptides or antibodies may not only prevent the generation of BK but also reduce Clq-induced or microbial-ligand-induced inflammatory responses. Employing synthetic peptides and gClqR deletion mutants, we confirmed previously predicted sites for C1q (residues 75-96) and HK (residues 204-218) and identified additional sites for both C1q and HK (residues 190-202), for C1q (residues 144-162), and for HIV-1 gp41 (residues 174-180). With the exception of residues 75-96, which is located in the alphaA coiled-coil N-terminal segment, most of the identified residues form part of the highly charged loops connecting the various beta-strands in the crystal structure. Taken together, the data support the notion that gC1qR could serve as a novel molecular target for the design of antibody-based and/or peptide-based therapy to attenuate acute and/or chronic inflammation associated with vascular leakage and infection.


Subject(s)
Complement C1q/drug effects , Infections/drug therapy , Inflammation/drug therapy , Receptors, Complement/drug effects , Animals , Humans , Ligands , Neoplasms/drug therapy , Neoplasms/physiopathology , Receptors, Complement/chemistry , Receptors, Complement/genetics
8.
Blood ; 120(6): 1228-36, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22700724

ABSTRACT

C1q modulates the differentiation and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because the 2 C1q receptors found on the DC surface-gC1qR and cC1qR-lack a direct conduit into intracellular elements, we postulated that the receptors must form complexes with transmembrane partners. In the present study, we show that DC-SIGN, a C-type lectin expressed on DCs, binds directly to C1q, as assessed by ELISA, flow cytometry, and immunoprecipitation experiments. Surface plasmon resonance analysis revealed that the interaction was specific, and both intact C1q and the globular portion of C1q bound to DC-SIGN. Whereas IgG reduced this binding significantly, the Arg residues (162-163) of the C1q-A chain, which are thought to contribute to the C1q-IgG interaction, were not required for C1q binding to DC-SIGN. Binding was reduced significantly in the absence of Ca(2+) and by preincubation of DC-SIGN with mannan, suggesting that C1q binds to DC-SIGN at its principal Ca(2+)-binding pocket, which has increased affinity for mannose residues. Antigen-capture ELISA and immunofluorescence microscopy revealed that C1q and gC1qR associate with DC-SIGN on blood DC precursors and immature DCs. The results of the present study suggest that C1q/gC1qR may regulate DC differentiation and function through the DC-SIGN-mediated induction of cell-signaling pathways.


Subject(s)
Carrier Proteins/metabolism , Cell Adhesion Molecules/metabolism , Complement C1q/metabolism , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Mitochondrial Proteins/metabolism , Multiprotein Complexes/metabolism , Receptors, Cell Surface/metabolism , Binding, Competitive , Calcium/pharmacology , Cell Differentiation/immunology , Cells, Cultured , Dendritic Cells/physiology , Humans , Models, Biological , Monocytes/metabolism , Monocytes/physiology , Multiprotein Complexes/physiology , Protein Binding/drug effects , Protein Multimerization/drug effects , Protein Multimerization/physiology
9.
Front Immunol ; 3: 38, 2012.
Article in English | MEDLINE | ID: mdl-22566921

ABSTRACT

The synthesis of the subunits of the C1 complex (C1q, C1s, C1r), and its regulator C1 inhibitor (C1-Inh) by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture enzyme-linked immunosorbent assay, we show here for the first time that, in addition to C1q, peripheral blood monocytes, and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, dendritic cell, and T cell activities, and its implications in host defense and tolerance.

10.
Front Immunol ; 32012 Apr 05.
Article in English | MEDLINE | ID: mdl-22536204

ABSTRACT

Research conducted over the past 20 years have helped us unravel not only the hidden structural and functional subtleties of human C1q, but also has catapulted the molecule from a mere recognition unit of the classical pathway to a well-recognized molecular sensor of damage-modified self or non-self antigens. Thus, C1q is involved in a rapidly expanding list of pathological disorders - including autoimmunity, trophoblast migration, preeclampsia, and cancer. The results of two recent reports are provided to underscore the critical role C1q plays in health and disease. First is the observation by Singh et al. (2011) showing that pregnant C1q-/- mice recapitulate the key features of human preeclampsia that correlate with increased fetal death. Treatment of the C1q-/- mice with pravastatin restored trophoblast invasiveness, placental blood flow, and angiogenic balance and, thus, prevented the onset of preeclampsia. Second is the report by Hong et al. (2009) which showed that C1q can induce apoptosis of prostate cancer cells by activating the tumor suppressor molecule WW-domain containing oxydoreductase (WWOX or WOX1) and destabilizing cell adhesion. Downregulation of C1q on the other hand, enhanced prostate hyperplasia and cancer formation due to failure of WOX1 activation. C1q belongs to a family of structurally and functionally related TNF-α-like family of proteins that may have arisen from a common ancestral gene. Therefore C1q not only shares the diverse functions with the tumor necrosis factor family of proteins, but also explains why C1q has retained some of its ancestral "cytokine-like" activities. This review is intended to highlight some of the structural and functional aspects of C1q by underscoring the growing list of its non-traditional functions.

11.
Front Immunol ; 22011 Nov 01.
Article in English | MEDLINE | ID: mdl-22282702

ABSTRACT

The endothelial cell receptor complex for kininogen (HK) comprises gC1qR, cytokeratin 1, and urokinase-type plasminogen activator receptor and is essential for activation of the kinin system that leads to bradykinin (BK) generation. Of these, gC1qR/p33 constitutes a high affinity site for HK - the BK precursor - and is therefore critical for the assembly of the kinin-generating cascade. Previous studies have identified a putative HK site within the C-terminal domain (residues 204-218) of gC1qR recognized by mAb 74.5.2. In these studies, we used information from the crystal structure of gC1qR, to engineer several deletion (Δ) mutants and test their ability to bind and/or support BK generation. While deletion of residues 204-218 (gC1qRΔ204-218), showed significantly reduced binding to HK, BK generation was not affected when tested by a sensitive bradykinin immunoassay. In fact, all of the gC1qR deletion mutants supported BK generation with the exception of gC1qRΔ154-162 and a point mutation in which Trp 233 was substituted with Gly. Binding studies also identified the existence of two additional sites at residues 144-162 and 190-202. Moreover, binding of HK to a synthetic peptide 190-202 was inhibited by mAbs 48 and 83, but not by mAb 74.5.2. Since a single residue separates domains 190-202 and 204-218, they may be part of a highly stable HK binding pocket and therefore a potential target for drug design to prevent vascular permeability and inflammation.

12.
J Immunol ; 183(1): 388-99, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19542450

ABSTRACT

Physiologic triggers and functional consequences of endogenous heat shock protein (HSP) responses in dendritic cells (DC) are poorly defined. In this study, we show that even in the absence of heat stress and infection, a specific cohort of DC/proinflammatory cytokines (IL-4-IL-13/IL-6/GM-CSF) institutes an enhanced inducible (i)HSP70 intracellular and extracellular response in human monocyte-derived DC, especially during the monocyte to DC transition. Interestingly, whereas heat stress alone initiated an intracellular iHSP70 response in monocyte DC precursors, it did not promote cell surface or secreted iHSP70 responses, both of which were induced by cytokines independently of heat. The cytokine-induced iHSP70 response, which did not occur in lymphocytes, or monocytes-macrophages generated with M-CSF, was instituted within 48 h of cytokine exposure, and peaked upon commitment to DC growth at 72 h. Although a return to baseline levels was noted after this period, a distinct rise in iHSP70 occurred again during terminal DC maturation. Chemical inhibition of the iHSP70 response with either triptolide or KNK-437 was coupled with inhibition of DC differentiation and yielded cells displaying features of monocytes-macrophages. Exogenously supplied riHSP70 amplified events associated with cytokine-advanced DC differentiation/maturation, most notably the up-regulation of antiapoptotic proteins (Bcl-x(L)). Engaging the HSP receptor CD40 with CD40L produced identical results as extracellular riHSP70, and, moreover, an enhanced iHSP70 response. Thus, distinct iHSP70 and HSP receptor-mediated responses are triggered by cytokines irrespective of heat stress and infection in monocyte-derived DC and may function to positively regulate monocyte-derived DC, especially during critical periods of their growth.


Subject(s)
Cell Differentiation/immunology , Cell Membrane/immunology , Cytokines/physiology , Dendritic Cells/immunology , HSP70 Heat-Shock Proteins/biosynthesis , HSP70 Heat-Shock Proteins/metabolism , Monocytes/immunology , Up-Regulation/immunology , Apoptosis Regulatory Proteins/biosynthesis , Apoptosis Regulatory Proteins/metabolism , Cell Membrane/metabolism , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/metabolism , Humans , Infections/immunology , Infections/metabolism , Intracellular Fluid/immunology , Intracellular Fluid/metabolism , Monocytes/cytology , Monocytes/metabolism , Signal Transduction/immunology , Stress, Physiological/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...