Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 22(1): 208, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413989

ABSTRACT

BACKGROUND: Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS: Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS: Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION: Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.


Subject(s)
Flavanones , Hesperidin , Multiple Myeloma , Mice , Animals , Humans , Hesperidin/pharmacology , Mitochondrial Dynamics , Multiple Myeloma/drug therapy , Molecular Docking Simulation , Mice, Inbred NOD , Mice, SCID , Flavanones/pharmacology , Flavanones/therapeutic use , Flavanones/chemistry
2.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139838

ABSTRACT

Polyphenols, an important class of natural products, are widely distributed in plant-based foods. These compounds are endowed with several biological activities and exert protective effects in various physiopathological contexts, including cancer. We herein investigated novel potential mechanisms of action of polyphenols, focusing on the proteasome, which has emerged as an attractive therapeutic target in cancers such as multiple myeloma. We carried out a structure-based virtual screening study using the DrugBank database as a repository of FDA-approved polyphenolic molecules. Starting from 86 polyphenolic compounds, based on the theoretical binding affinity and the interactions established with key residues of the chymotrypsin binding site, we selected 2 promising candidates, namely Hesperidin and Diosmin. The further assessment of the biologic activity highlighted, for the first time, the capability of these two molecules to inhibit the ß5-proteasome activity and to exert anti-tumor activity against proteasome inhibitor-sensitive or resistant multiple myeloma cell lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...