Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Plant Sci ; 335: 111793, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37454818

ABSTRACT

Nutrient deficiencies considerably limit agricultural production worldwide. However, while single deficiencies are widely studied, combined deficiencies are poorly addressed. Hence, the aim of this paper was to study single and combined deficiencies of iron (Fe) and phosphorus (P) in barley (Hordeum vulgare) and tomato (Solanum lycopersicum). Plants were grown in hydroponics and root exudation was measured over the growing period. At harvest, root morphology and root and shoot ionome was assessed. Shoot-to-root-ratio decreased in both species and in all nutrient deficiencies, besides in -Fe tomato. Barley root growth was enhanced in plants subjected to double deficiency behaving similarly to -P, while tomato reduced root morphology parameters in all treatments. To cope with the nutrient deficiency barley exuded mostly chelants, while tomato relied on organic acids. Moreover, tomato exhibited a slight exudation increase over time not detected in barley. Overall, in none of the species the double deficiency caused a substantial increase in root exudation. Multivariate statistics emphasized that all the treatments were significantly different from each other in tomato, while in barley only -Fe was statistically different from the other treatments. Our findings highlight that the response of the studied plants in double deficiencies is not additive but plant specific.


Subject(s)
Hordeum , Solanum lycopersicum , Plant Roots , Iron , Biological Transport , Nutrients , Hordeum/genetics
2.
BMC Microbiol ; 23(1): 184, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438698

ABSTRACT

BACKGROUND: The release of organic acids (OAs) is considered the main mechanism used by phosphate-solubilizing bacteria (PSB) to dissolve inorganic phosphate in soil. Nevertheless, little is known about the effect of individual OAs produced by a particular PSB in a soil-plant system. For these reasons, the present work aimed at investigating the effect of Enterobacter sp. strain 15S and the exogenous application of its OAs on (i) the solubilization of tricalcium phosphate (TCP), (ii) plant growth and (iii) P nutrition of cucumber. To this purpose two independent experiments have been performed. RESULTS: In the first experiment, carried out in vitro, the phosphate solubilizing activity of Enterobacter 15S was associated with the release of citric, fumaric, ketoglutaric, malic, and oxalic acids. In the second experiment, cucumber plants were grown in a Leonard jar system consisting of a nutrient solution supplemented with the OAs previously identified in Enterobacter 15S (jar's base) and a substrate supplemented with the insoluble TCP where cucumber plants were grown (jar's top). The use of Enterobacter 15S and its secreted OAs proved to be efficient in the in situ TCP solubilization. In particular, the enhancement of the morpho-physiological traits of P-starved cucumber plants was evident when treated with Enterobacter 15S, oxalate, or citrate. The highest accumulation of P in roots and shoots induced by such treatments further corroborated this hypothesis. CONCLUSION: In our study, the results presented suggest that organic acids released by Enterobacter 15S as well as the bacterium itself can enhance the P-acquisition by cucumber plants.


Subject(s)
Cucumis sativus , Calcium Phosphates , Phosphates , Organic Chemicals , Citric Acid , Enterobacter , Oxalates
3.
Front Plant Sci ; 12: 758213, 2021.
Article in English | MEDLINE | ID: mdl-34745190

ABSTRACT

Nitrogen (N) as well as Phosphorus (P) are key nutrients determining crop productivity. Legumes have developed strategies to overcome nutrient limitation by, for example, forming a symbiotic relationship with N-fixing rhizobia and the release of P-mobilizing exudates and are thus able to grow without supply of N or P fertilizers. The legume-rhizobial symbiosis starts with root release of isoflavonoids that act as signaling molecules perceived by compatible bacteria. Subsequently, bacteria release nod factors, which induce signaling cascades allowing the formation of functional N-fixing nodules. We report here the identification and functional characterization of a plasma membrane-localized MATE-type transporter (LaMATE2) involved in the release of genistein from white lupin roots. The LaMATE2 expression in the root is upregulated under N deficiency as well as low phosphate availability, two nutritional deficiencies that induce the release of this isoflavonoid. LaMATE2 silencing reduced genistein efflux and even more the formation of symbiotic nodules, supporting the crucial role of LaMATE2 in isoflavonoid release and nodulation. Furthermore, silencing of LaMATE2 limited the P-solubilization activity of lupin root exudates. Transport assays in yeast vesicles demonstrated that LaMATE2 acts as a proton-driven isoflavonoid transporter.

4.
Front Plant Sci ; 12: 719873, 2021.
Article in English | MEDLINE | ID: mdl-34504509

ABSTRACT

Phosphorus (P) is an essential nutrient for plants. The use of plant growth-promoting bacteria (PGPB) may also improve plant development and enhance nutrient availability, thus providing a promising alternative or supplement to chemical fertilizers. This study aimed to evaluate the effectiveness of Enterobacter sp. strain 15S in improving the growth and P acquisition of maize (monocot) and cucumber (dicot) plants under P-deficient hydroponic conditions, either by itself or by solubilizing an external source of inorganic phosphate (Pi) [Ca3(PO4)2]. The inoculation with Enterobacter 15S elicited different effects on the root architecture and biomass of cucumber and maize depending on the P supply. Under sufficient P, the bacterium induced a positive effect on the whole root system architecture of both plants. However, under P deficiency, the bacterium in combination with Ca3(PO4)2 induced a more remarkable effect on cucumber, while the bacterium alone was better in improving the root system of maize compared to non-inoculated plants. In P-deficient plants, bacterial inoculation also led to a chlorophyll content [soil-plant analysis development (SPAD) index] like that in P-sufficient plants (p < 0.05). Regarding P nutrition, the ionomic analysis indicated that inoculation with Enterobacter 15S increased the allocation of P in roots (+31%) and shoots (+53%) of cucumber plants grown in a P-free nutrient solution (NS) supplemented with the external insoluble phosphate, whereas maize plants inoculated with the bacterium alone showed a higher content of P only in roots (36%) but not in shoots. Furthermore, in P-deficient cucumber plants, all Pi transporter genes (CsPT1.3, CsPT1.4, CsPT1.9, and Cucsa383630.1) were upregulated by the bacterium inoculation, whereas, in P-deficient maize plants, the expression of ZmPT1 and ZmPT5 was downregulated by the bacterial inoculation. Taken together, these results suggest that, in its interaction with P-deficient cucumber plants, Enterobacter strain 15S might have solubilized the Ca3(PO4)2 to help the plants overcome P deficiency, while the association of maize plants with the bacterium might have triggered a different mechanism affecting plant metabolism. Thus, the mechanisms by which Enterobacter 15S improves plant growth and P nutrition are dependent on crop and nutrient status.

5.
Front Plant Sci ; 12: 681263, 2021.
Article in English | MEDLINE | ID: mdl-33968123

ABSTRACT

[This corrects the article DOI: 10.3389/fpls.2020.584568.].

6.
Front Plant Sci ; 11: 596000, 2020.
Article in English | MEDLINE | ID: mdl-33224175

ABSTRACT

Sweet basil (Ocimum basilicum L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value. In addition, plant-growth-promoting rhizobacteria (PGPR) have been shown to affect plant growth and quality. Azospirillum brasilense is a PGPR able to colonize the root system of different crops, promoting their growth and development and influencing the acquisition of mineral nutrients. On the bases of these observations, we aimed at investigating the impact of both mineral nutrients supply and rhizobacteria inoculation on the nutraceutical value on two different sweet basil varieties, i.e., Genovese and Red Rubin. To these objectives, basil plants have been grown in hydroponics, with nutrient solutions fortified for the concentration of either S or N, supplied as SO4 2- or NO3 -, respectively. In addition, plants were either non-inoculated or inoculated with A. brasilense. At harvest, basil plants were assessed for the yield and the nutraceutical properties of the edible parts. The cultivation of basil plants in the fortified nutrient solutions showed a general increasing trend in the accumulation of the fresh biomass, albeit the inoculation with A. brasilense did not further promote the growth. The metabolomic analyses disclosed a strong effect of treatments on the differential accumulation of metabolites in basil leaves, producing the modulation of more than 400 compounds belonging to the secondary metabolism, as phenylpropanoids, isoprenoids, alkaloids, several flavonoids, and terpenoids. The primary metabolism that resulted was also influenced by the treatments showing changes in the fatty acid, carbohydrates, and amino acids metabolism. The amino acid analysis revealed that the treatments induced an increase in arginine (Arg) content in the leaves, which has been shown to have beneficial effects on human health. In conclusion, between the two cultivars studied, Red Rubin displayed the most positive effect in terms of nutritional value, which was further enhanced following A. brasilense inoculation.

7.
Front Plant Sci ; 11: 584568, 2020.
Article in English | MEDLINE | ID: mdl-33117414

ABSTRACT

The reliable quantification of root exudation and nutrient uptake is a very challenging task, especially when considering single root segments. Most methods used necessitate root handling e.g. root dissecting/cutting. However, there is a knowledge gap on how much these techniques affect root physiology. Thus, this study aimed at assessing the effect of different root handling techniques on the phosphate (Pi) uptake and carboxylate exudation of white lupin roots. White lupin plants were grown hydroponically in a full and Pi-deficient nutrient solution for 60 days. Phosphate uptake and carboxylate exudation of cluster and non-cluster roots were measured using custom made cells 1, 4, and 8 h after the onset of light. Three different experimental set-ups were used: i) without cutting the root apparatus from the shoots, nor dissecting the root into smaller root sections - named intact plant (IP); ii) separating the roots from the shoots, without dissecting the root into smaller sections - named intact root (IR); iii) separating the roots form the shoots and dissecting the roots in different sections-named dissected roots (DR). The sampling at 8 h led to the most significant alterations of the root Pi uptake induced by the sampling method. Generally, roots were mainly affected by the DR sampling method, indicating that results of studies in which roots are cut/dissected should be interpreted carefully. Additionally, the study revealed that the root tip showed a very high Pi uptake rate, suggesting that the tip could act as a Pi sensor. Citrate, malate and lactate could be detected in juvenile, mature and senescent cluster root exudation. We observed a significant effect of the handling method on carboxylate exudation only at sampling hours 1 and 8, although no clear and distinctive trend could be observed. Results here presented reveal that the root handling as well as the sampling time point can greatly influence root physiology and therefore should not be neglected when interpreting rhizosphere dynamics.

8.
Sci Rep ; 10(1): 18759, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33127977

ABSTRACT

Plasmopara viticola is one of the most important pathogens infecting Vitis vinifera plants. The interactions among P. viticola and both susceptible and resistant grapevine plants have been extensively characterised, at transcriptomic, proteomic and metabolomic levels. However, the involvement of plants ionome in the response against the pathogen has been completely neglected so far. Therefore, this study was aimed at investigating the possible role of leaf ionomic modulation during compatible and incompatible interactions between P. viticola and grapevine plants. In susceptible cultivars, a dramatic redistribution of mineral elements has been observed, thus uncovering a possible role for mineral nutrients in the response against pathogens. On the contrary, the resistant cultivars did not present substantial rearrangement of mineral elements at leaf level, except for manganese (Mn) and iron (Fe). This might demonstrate that, resistant cultivars, albeit expressing the resistance gene, still exploit a pathogen response mechanism based on the local increase in the concentration of microelements, which are involved in the synthesis of secondary metabolites and reactive oxygen species. Moreover, these data also highlight the link between the mineral nutrition and plants' response to pathogens, further stressing that appropriate fertilization strategies can be fundamental for the expression of response mechanisms against pathogens.


Subject(s)
Minerals/metabolism , Oomycetes/pathogenicity , Plant Diseases/microbiology , Vitis/metabolism , Vitis/microbiology , Gene Expression Regulation, Plant , Iron/metabolism , Manganese/metabolism , Proteomics/methods
9.
Plant Physiol Biochem ; 157: 138-147, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33113485

ABSTRACT

Due to the deliberate use of cupric fungicides in the last century for crop-defence programs, copper (Cu) has considerably accumulated in the soil. The concentrations of Cu often exceed the safety limits of risk assessment for Cu in soil and this may cause toxicity in plants. Copper toxicity induces nutritional imbalances in plants and constraints to plants growth. These aspects might be of paramount importance in the case of phosphorus (P), which is an essential plant macronutrient. In this work, hydroponically grown cucumber plants were used to investigate the influence of the exposure to different Cu concentrations (0.2, 5, 25 and 50 µM) on i) the phenotypic traits of plants, particularly at root level, ii) the nutrient content in both roots and shoots, and iii) the P uptake mechanisms, considering both the biochemical and molecular aspects. At high Cu concentrations (i.e. above 25 µM), the shoot and root growth resulted stunted and the P influx rate diminished. Furthermore, two P transporter genes (i.e. CsPT1.4 and CsPT1.9) were upregulated at the highest Cu concentration, albeit with different induction kinetics. Overall, these results confirm that high Cu concentrations can limit the root acquisition of P, most likely via a direct action on the uptake mechanisms (e.g. transporters). However, the alteration of root plasma membrane permeability induced by Cu toxicity might also play a pivotal role in the observed phenomenon.


Subject(s)
Copper/toxicity , Cucumis sativus/metabolism , Phosphorus/metabolism , Soil Pollutants/toxicity , Cucumis sativus/drug effects , Gene Expression Regulation, Plant , Phenotype , Plant Roots/metabolism , Soil
10.
Heliyon ; 6(2): e03325, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32055736

ABSTRACT

Spreading of manure on agricultural soils is a main source of ammonia emissions and/or nitrate leaching. It has been addressed by the European Union with the Directives 2001/81/EC and 91/676/EEC to protect the environment and the human health. The disposal of manure has therefore become an economic and environmental challenge for farmers. Thus, the conversion of manure via anaerobic digestion in a biogas plant could be a sustainable solution, having the byproducts (solid and liquid digestates) the potential to be used as fertilizers for crops. This work aimed at characterizing and assessing the effect of digestates obtained from a local biogas plant (Biogas Wipptal, Gmbh), either in the form of liquid fraction or as a solid pellet on: (i) the fertility of the soils during an incubation experiment; (ii) the plant growth and nutritional status of different species (maize and cucumber). Moreover, an extensive characterization of the pellet was performed via X-ray microanalytical techniques. The data obtained showed that both digestates exhibit a fertilizing potential for crops, depending on the plant species and the fertilizer dose: the liquid fraction increases the shoot fresh weight at low dose in cucumber, conversely, the solid pellet increases the shoot fresh weight at high dose in maize. The liquid digestate may have the advantage to release nutrients (i.e. nitrogen) more rapidly to plants, but its storage represents the main constraint (i.e. ammonia volatilization). Indeed, pelleting the digestates could improve the storability of the fertilizer besides enhancing plant nutrient availability (i.e. phosphate and potassium), plant biomass and soil biochemical quality (i.e. microbial biomass and activity). The physical structure and chemical composition of pellet digestates allow nutrients to be easily mobilized over time, representing a possible source of mineral nutrients also in long-term applications.

11.
Plant Sci ; 293: 110431, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32081271

ABSTRACT

Iron (Fe) is an essential micronutrient for plant life and development. However, in soil, Fe bioavailability is often limited and variable in space and time, thus different regions of the same root system might be exposed to different nutrient provisions. Few studies showed that the response to variable Fe provision is controlled at local and systemic levels, albeit the identity of the signals involved is still elusive. Iron itself was suggested as local mediator, whilst hormones were proposed for the long-distance signalling pathway. Therefore, the aim of this work was to assess whether Fe, when localized in a restricted area of the root system, might be involved in both local and systemic signaling. The combination of resupply experiments in a split-root system, the use of 57Fe isotope and chemical imaging techniques allowed tracing Fe movement within cucumber plants. Soon after the resupply, Fe is distributed to the whole plant, likely to overcome a minimum Fe concentration threshold aimed at repressing the deficiency response. Iron was then preferentially translocated to leaves and, only afterwards, the root system was completely resupplied. Collectively, these observations might thus highlight a root-to-shoot-to-root Fe translocation route in cucumber plants grown on a patchy nutrient substrate.


Subject(s)
Biological Transport/physiology , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Iron/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Calcium/metabolism , Iron/pharmacology , Iron Deficiencies , Isotopes , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Shoots/drug effects , Soil/chemistry , Zinc/metabolism
12.
Chemosphere ; 243: 125298, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31731135

ABSTRACT

Ryegrass (Lolium perenne L.) is a plant species that can express mechanisms of tolerance to copper (Cu) toxicity. Therefore, the agronomical approach of intercropping system with ryegrass may represent a promising tool to limit the onset of Cu toxicity symptoms in the other intercropped plants species, particularly when an inadequate nutrient availability like iron (Fe) shortage is also concurrently present. This study aimed at assessing the mechanisms involved in the mitigation of Cu phytotoxicity and the stress effects on plant growth, root morphology and nutrition of ryegrass fertilized with two different Fe sources. To this purpose, seedlings of ryegrass were hydroponically grown for 14 days in controlled conditions with 4 different levels of Cu (0.2, 5.0, 25 and 50 µM) and with either 100 µM Fe-EDDHA or Fe-EDTA. Results show that high levels of Cu availability enhanced the root content of organic anions as well as the root exudation. Different Fe fertilizations at the condition of 50 µM Cu induced changes in root phenolic compounds, citrate and fumarate contents and the exudation pattern of phenolic compounds. Differences in plant growth were not observed between the two Fe sources, although Cu concentration in plant tissue fed with Fe-EDTA was lower in the condition of 50 µM Cu. The enhanced root exudation of Cu-complexing organic compounds (including phenolics) in ryegrass plants when exposed to excessive Cu availability could be at the basis of the ameliorated edaphic rhizosphere conditions (lower Cu availability). For this reason, from the agronomical point of view ryegrass plants used in intercropping systems with crops like vine plants could represent a promising strategy to control Cu toxicity in vineyard soils. Further studies under the field conditions must be taken to support present findings.


Subject(s)
Agriculture/methods , Copper/toxicity , Fertilizers , Soil Pollutants/toxicity , Crops, Agricultural , Farms , Iron/chemistry , Iron/pharmacology , Lolium/growth & development , Plant Roots/drug effects , Rhizosphere , Seedlings/chemistry , Soil , Soil Pollutants/analysis
13.
Front Plant Sci ; 10: 923, 2019.
Article in English | MEDLINE | ID: mdl-31396245

ABSTRACT

Soilless cultivation represent a valid opportunity for the agricultural production sector, especially in areas characterized by severe soil degradation and limited water availability. Furthermore, this agronomic practice embodies a favorable response toward an environment-friendly agriculture and a promising tool in the vision of a general challenge in terms of food security. This review aims therefore at unraveling limitations and opportunities of hydroponic solutions used in soilless cropping systems focusing on the plant mineral nutrition process. In particular, this review provides information (1) on the processes and mechanisms occurring in the hydroponic solutions that ensure an adequate nutrient concentration and thus an optimal nutrient acquisition without leading to nutritional disorders influencing ultimately also crop quality (e.g., solubilization/precipitation of nutrients/elements in the hydroponic solution, substrate specificity in the nutrient uptake process, nutrient competition/antagonism and interactions among nutrients); (2) on new emerging technologies that might improve the management of soilless cropping systems such as the use of nanoparticles and beneficial microorganism like plant growth-promoting rhizobacteria (PGPRs); (3) on tools (multi-element sensors and interpretation algorithms based on machine learning logics to analyze such data) that might be exploited in a smart agriculture approach to monitor the availability of nutrients/elements in the hydroponic solution and to modify its composition in realtime. These aspects are discussed considering what has been recently demonstrated at the scientific level and applied in the industrial context.

14.
Front Plant Sci ; 10: 946, 2019.
Article in English | MEDLINE | ID: mdl-31379914

ABSTRACT

The high copper (Cu) concentration in vineyard soils causes the increase of Cu toxicity symptoms in young grapevines. Recently, intercropping of grapevine and oat was shown to reduce Cu toxicity effects, modulating the root ionome. On these bases, the focus of the work was to investigate the impact of Cu toxicity of either monocropped or oat-intercropped grapevine rootstocks plants (196.17 and Fercal), at both phenotypic (i.e., root architecture), and molecular (i.e., expression of transporters) levels. The results showed a different response in terms of root morphology that are both rootstock- and cropping system dependent. Moreover, the expression pattern of transporter genes (i.e., VvCTr, VvNRAMP, and VvIRT1) in monocropped grapevine might resemble a Mn deficiency response induced by the excess of Cu, especially in Fercal plants. The gene expression in intercropped grapevines suggested rootstock-specific response mechanisms, depending on Cu levels. In fact, at low Cu concentrations, Fercal enhanced both root system growth and transporter genes expression; contrarily, 196.17 increased apoplast divalent cations accumulation and transporters expression. At high Cu concentrations, Fercal increased the expression of all bivalent cation transporters and, as previously observed, enhanced the release of root exudates, whereas the 196.17 only modulated transporters. In conclusion, our results might suggest that the different adaptation strategies of the two rootstocks to Cu toxicity could be mainly ascribable to a fine-tuning of bivalent cations transporters expression at root level.

15.
Ecotoxicol Environ Saf ; 182: 109430, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31306921

ABSTRACT

Agronomic strategies as intercropping might be applied to reduce plant-available copper (Cu) in Cu-contaminated soils. Thus, our aim was to characterize two different oat cultivars, Avena sativa L. cv. Fronteira and cv. Perona for their ability to tolerate and/or phytostabilize Cu. Copper toxicity reduced plant biomass of both cultivars. The exudate analysis revealed the presence of phenolic compounds and phytosiderophores, yet with a different pattern between the cultivars: cv. Fronteira showed a Cu-concentration and time-dependent release of phenolic compounds, while cv. Perona down-regulated this release during the second week of treatment. Copper concentration increased linearly in all the tissues analysed with increasing Cu concentration showing yet a different compartmentalization: cv. Fronteira and cv. Perona preferentially accumulated Cu in the apoplasm and symplast, respectively. This higher accumulation of Cu in the apoplasm strongly reduces the available binding sites, leading to a competitive absorption with other macro-and micronutrients (e.g. Ca, Mn, Zn). Furthermore, in both cultivars Cu toxicity led to a significant reduction of shoot phosphorus content. The ionomic profile and compartmentalization of Cu together with the root activities demonstrate the different tolerance mechanism towards Cu toxicity of the two oat cultivars. In particular, cv. Fronteira seems to adopt an exclusion strategy based on accumulating Cu in the apoplasm and on the exudation of phenolic compounds. Thus, this cultivar could reduce the mobility and the consequent soil bioavailability of Cu playing an important role as phytostabilizer plant in intercropping systems in Cu-contaminated vineyards or orchards.


Subject(s)
Avena/drug effects , Copper/toxicity , Soil Pollutants/toxicity , Avena/chemistry , Biological Availability , Biomass , Copper/analysis , Environmental Pollution/analysis , Plant Roots/metabolism , Soil/chemistry , Soil Pollutants/analysis
16.
Plant Mol Biol ; 101(1-2): 129-148, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31267256

ABSTRACT

Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for fruit tree cultivation such as apple (Malus × domestica) leading very often to a decrease of fruit productivity and quality worsening. Aim of this study was to characterize common and specific features of plant response to Fe and P deficiencies by ionomic, transcriptomic and exudation profiling of apple roots. Under P deficiency, the root release of oxalate and flavonoids increased. Genes encoding for transcription factors and transporters involved in the synthesis and release of root exudates were upregulated by P-deficient roots, as well as those directly related to P acquisition. In Fe-deficiency, plants showed an over-accumulation of P, Zn, Cu and Mn and induced the transcription of those genes involved in the mechanisms for the release of Fe-chelating compounds and Fe mobilization inside the plants. The intriguing modulation in roots of some transcription factors, might indicate that, in this condition, Fe homeostasis is regulated by a FIT-independent pathway. In the present work common and specific features of apple response to Fe and P deficiency has been reported. In particular, data indicate similar modulation of a. 230 genes, suggesting the occurrence of a crosstalk between the two nutritional responses involving the transcriptional regulation, shikimate pathway, and the root release of exudates.


Subject(s)
Iron Deficiencies , Malus/physiology , Phosphorus/deficiency , Transcriptome , Biological Transport , Gene Expression Profiling , Homeostasis , Iron/metabolism , Malus/genetics , Phosphorus/metabolism , Plant Exudates/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/physiology , Sequence Analysis, RNA
17.
J Exp Bot ; 70(4): 1313-1324, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30715422

ABSTRACT

Nitrogen (N) represents one of the limiting factors for crop growth and productivity and to date has been widely supplied via external application of fertilizers. However, the use of plant growth-promoting rhizobacteria (PGPR) might represent a valuable tool to further improve plant nutrition. This study examines the influence of Azospirillum brasilense strain Cd on nitrate uptake in maize (Zea mays) plants, focusing on the high-affinity transport system (HATS). Plants were induced with nitrate (500 µM) and either inoculated or not with Azospirillum. Inoculation decreased the nitrate uptake rate in induced plants, suggesting that Azospirillum may negatively affect HATS in the short term. The expression dynamics of ZmNF-YA and ZmLBD37 suggested that Azospirillum affected the N balance in the plants, most probably by supplying them with reduced N, i.e. NH4+. This was further corroborated by measurements of total N and the expression of ammonium transporter genes. Overall, our data demonstrate that Azospirillum can counteract the plant response to nitrate induction, albeit without compromising N nutrition. This suggests that the agricultural application of microbial inoculants requires fine-tuning of external fertilizer inputs.


Subject(s)
Agricultural Inoculants/physiology , Azospirillum brasilense/chemistry , Nitrates/metabolism , Zea mays/metabolism , Biological Transport
18.
Plant Physiol Biochem ; 136: 118-126, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30660677

ABSTRACT

Azospirillum brasilense was reported to up-regulate iron (Fe) uptake mechanisms, such as Fe reduction and rhizosphere acidification, in both Fe sufficient and deficient cucumber plants (Cucumis sativus L.). Strategy I plants take up both Fe and copper (Cu) after their reduction mediated by the ferric-chelate reductase oxidase (FRO) enzyme. Interestingly, in cucumber genome only one FRO gene is reported. Thus, in the present study we applied a bioinformatics approach to identify the member of cucumber FRO gene family and allowed the identification of at least three CsFRO genes, one of which was the already identified, i.e. CsFRO1. The expression patterns of the newly identified transcripts were investigated in hydroponically grown cucumber plants treated with different Fe and Cu nutritional regimes. Gene expression was then correlated with morphological (i.e. root architecture) and physiological (Fe(III) reducing activity) parameters to shed light on: i) the CsFRO homologue responsible of the increased reduction activity in Fe-sufficient plants inoculated with A. brasilense cucumber plants, and ii) the possible effect of A. brasilense in ameliorating the symptoms of Cu toxicity in cucumber plants. The data obtained showed that all the CsFRO genes were expressed in the root tissues of cucumber plants and responded to Cu starvation, combined Cu/Fe deficiency and Cu toxicity. Only CsFRO3 was modulated by the A. brasilense in Fe-sufficient plants suggesting for the first time a different specificity of action of the three isoenzymes depending not only on the nutritional regime (either deficiency or toxicity) but also on the presence of the PGPR. Furthermore, results suggest that the PGPR could even ameliorate the stress symptoms caused by both the double (i.e. Cu and Fe) and Cu deficiency as well as Cu toxicity modulating, on one hand, the growth of the root system and, on the other hand, the root nutrient uptake.


Subject(s)
Azospirillum brasilense/physiology , Cucumis sativus/microbiology , FMN Reductase/metabolism , Copper/deficiency , Copper/metabolism , Cucumis sativus/enzymology , Cucumis sativus/metabolism , Iron/metabolism , Iron Deficiencies , Plant Roots/metabolism , Real-Time Polymerase Chain Reaction
19.
Front Plant Sci ; 8: 1887, 2017.
Article in English | MEDLINE | ID: mdl-29163609

ABSTRACT

Selenium (Se) is an essential nutrient for humans, due to its antioxidant properties, whereas, to date, its essentiality to plants still remains to be demonstrated. Nevertheless, if added to the cultivation substrate, plants growth resulted enhanced. However, the concentration of Se in agricultural soils is very variable, ranging from 0.01 mg kg-1 up to 10 mg kg-1 in seleniferous areas. Therefore several studies have been performed aimed at bio-fortifying crops with Se and the approaches exploited were mainly based on the application of Se fertilizers. The aim of the present research was to assess the biofortification potential of Se in hydroponically grown strawberry fruits and its effects on qualitative parameters and nutraceutical compounds. The supplementation with Se did not negatively affect the growth and the yield of strawberries, and induced an accumulation of Se in fruits. Furthermore, the metabolomic analyses highlighted an increase in flavonoid and polyphenol compounds, which contributes to the organoleptic features and antioxidant capacity of fruits; in addition, an increase in the fruits sweetness also was detected in biofortified strawberries. In conclusion, based on our observations, strawberry plants seem a good target for Se biofortification, thus allowing the increase in the human intake of this essential micronutrient.

20.
J Exp Bot ; 66(20): 6483-95, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26188206

ABSTRACT

Strawberries are a very popular fruit among berries, for both their commercial and economic importance, but especially for their beneficial effects for human health. However, their bioactive compound content is strictly related to the nutritional status of the plant and might be affected if nutritional disorders (e.g. Fe or P shortage) occur. To overcome nutrient shortages, plants evolved different mechanisms, which often involve the release of root exudates. The biochemical and molecular mechanisms underlying root exudation and its regulation are as yet still poorly known, in particular in woody crop species. The aim of this work was therefore to characterize the pattern of root exudation of strawberry plants grown in either P or Fe deficiency, by investigating metabolomic changes of root tissues and the expression of genes putatively involved in exudate extrusion. Although P and Fe deficiencies differentially affected the total metabolism, some metabolites (e.g. raffinose and galactose) accumulated in roots similarly under both conditions. Moreover, P deficiency specifically affected the content of galactaric acid, malic acid, lysine, proline, and sorbitol-6-phosphate, whereas Fe deficiency specifically affected the content of sucrose, dehydroascorbic acid, galactonate, and ferulic acid. At the same time, the citrate content did not change in roots under both nutrient deficiencies with respect to the control. However, a strong release of citrate was observed, and it increased significantly with time, being +250% and +300% higher in Fe- and P-deficient plants, respectively, compared with the control. Moreover, concomitantly, a significant acidification of the growth medium was observed in both treatments. Gene expression analyses highlighted for the first time that at least two members of the multidrug and toxic compound extrusion (MATE) transporter family and one member of the plasma membrane H(+)-ATPase family are involved in the response to both P and Fe starvation in strawberry plants.


Subject(s)
Fragaria/metabolism , Iron Deficiencies , Metabolome , Phosphorus/deficiency , Plant Proteins/metabolism , Fragaria/growth & development , Plant Roots/growth & development , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...