Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 23(24): 6481-94, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25027326

ABSTRACT

Williams-Beuren syndrome is a developmental multisystemic disorder caused by a recurrent 1.55-1.83 Mb heterozygous deletion on human chromosome band 7q11.23. Through chromosomal engineering with the cre-loxP system, we have generated mice with an almost complete deletion (CD) of the conserved syntenic region on chromosome 5G2. Heterozygous CD mice were viable, fertile and had a normal lifespan, while homozygotes were early embryonic lethal. Transcript levels of most deleted genes were reduced 50% in several tissues, consistent with gene dosage. Heterozygous mutant mice showed postnatal growth delay with reduced body weight and craniofacial abnormalities such as small mandible. The cardiovascular phenotype was only manifested with borderline hypertension, mildly increased arterial wall thickness and cardiac hypertrophy. The neurobehavioral phenotype revealed impairments in motor coordination, increased startle response to acoustic stimuli and hypersociability. Mutant mice showed a general reduction in brain weight. Cellular and histological abnormalities were present in the amygdala, cortex and hippocampus, including increased proportion of immature neurons. In summary, these mice recapitulate most crucial phenotypes of the human disorder, provide novel insights into the pathophysiological mechanisms of the disease such as the neural substrates of the behavioral manifestations, and will be valuable to evaluate novel therapeutic approaches.


Subject(s)
Chromosome Deletion , Chromosomes, Mammalian , Craniofacial Abnormalities/genetics , Disease Models, Animal , Williams Syndrome/genetics , Animals , Behavior, Animal , Body Weight , Brain/pathology , Brain/physiopathology , Cardiomegaly/physiopathology , Chromosomes, Human, Pair 7 , Craniofacial Abnormalities/pathology , Craniofacial Abnormalities/physiopathology , Female , Gene Dosage , Genes, Lethal , Heterozygote , Humans , Hypertension/physiopathology , Male , Mice , Mice, Knockout , Neurons/pathology , Organ Size , Synteny , Williams Syndrome/pathology , Williams Syndrome/physiopathology
2.
J Biophotonics ; 7(1-2): 96-102, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23401460

ABSTRACT

Bone-marrow (BM)-derived cells have been shown to be capable of aiding skin regeneration in vivo by differentiating into keratinocytes. However, the conditions under which this occurs are not fully understood. Characterizing innate mechanisms of skin regeneration by stem cells in vivo is important for the area of stem cell biology. In this study, we investigate the use of novel in vivo imaging technology for characterizing the contribution of BM-derived cells to regeneration of the epidermis in mouse skin in vivo. In vivo imaging provides the ability to non-invasively observe the spatial positions and morphology of the BM-derived cells. Using a GFP BM-transplanted mouse model and in vivo multimodal microscopy, BM-derived cells can be observed in the skin. Our in vivo imaging method was used to search for the presence and identify the 3D spatial distribution of BM-derived cells in the epidermis of the skin under normal conditions, following wound healing, and after syngeneic skin grafting. We did not observe any evidence of BM-derived keratinocytes under these conditions, but we did observe BM-derived dendritic cells in the skin grafts. In vivo multimodal imaging has great potential for characterizing the conditions under which BM-derived cells contribute to skin regeneration.


Subject(s)
Bone Marrow Cells/cytology , Microscopy/methods , Regeneration , Skin Physiological Phenomena , Skin/cytology , Animals , Keratinocytes/cytology , Mice , Mice, Inbred C57BL , Multimodal Imaging , Optical Imaging , Skin Transplantation
3.
Biomed Opt Express ; 4(10): 1817-28, 2013.
Article in English | MEDLINE | ID: mdl-24156046

ABSTRACT

Zinc oxide (ZnO) nanoparticles (NPs) are widely used in cosmetic and sunscreen products which are applied topically to the skin. Despite their widespread use, the safety and biological response of these particles remains an active area of investigation. In this paper we present methods based on in vivo multiphoton microscopy (MPM) in skin to address relevant questions about the potential toxicity and immunological response of ZnO NPs. Registration of time-lapse volumetric MPM images allows the same skin site to be tracked across multiple days for visualizing and quantifying cellular and structural changes in response to NP exposure. Making use of the unique optical properties of ZnO enables high contrast detection of the NPs in the presence of strong autofluorescence and second harmonic generation (SHG) background from the skin. A green fluorescent protein (GFP) bone marrow (BM) transplanted mouse model is used to visualize and assess the dynamic response of BM-derived immune cells. These cells are visualized to assess the potential for ZnO NPs to interact with immune cells and elicit an immune reaction in skin. We investigate both topical and dermal exposure of the ZnO NPs. The methods and findings presented in this paper demonstrate a novel approach for tracking ZnO NPs in vivo and for visualizing the cellular response of the exposed tissue to assess the immunological response and potential toxicity of these particles.

4.
BMC Med Genet ; 11: 61, 2010 Apr 19.
Article in English | MEDLINE | ID: mdl-20403157

ABSTRACT

BACKGROUND: GTF2I codes for a general intrinsic transcription factor and calcium channel regulator TFII-I, with high and ubiquitous expression, and a strong candidate for involvement in the morphological and neuro-developmental anomalies of the Williams-Beuren syndrome (WBS). WBS is a genetic disorder due to a recurring deletion of about 1,55-1,83 Mb containing 25-28 genes in chromosome band 7q11.23 including GTF2I. Completed homozygous loss of either the Gtf2i or Gtf2ird1 function in mice provided additional evidence for the involvement of both genes in the craniofacial and cognitive phenotype. Unfortunately nothing is now about the behavioral characterization of heterozygous mice. METHODS: By gene targeting we have generated a mutant mice with a deletion of the first 140 amino-acids of TFII-I. mRNA and protein expression analysis were used to document the effect of the study deletion. We performed behavioral characterization of heterozygous mutant mice to document in vivo implications of TFII-I in the cognitive profile of WBS patients. RESULTS: Homozygous and heterozygous mutant mice exhibit craniofacial alterations, most clearly represented in homozygous condition. Behavioral test demonstrate that heterozygous mutant mice exhibit some neurobehavioral alterations and hyperacusis or odynacusis that could be associated with specific features of WBS phenotype. Homozygous mutant mice present highly compromised embryonic viability and fertility. Regarding cellular model, we documented a retarded growth in heterozygous MEFs respect to homozygous or wild-type MEFs. CONCLUSION: Our data confirm that, although additive effects of haploinsufficiency at several genes may contribute to the full craniofacial or neurocognitive features of WBS, correct expression of GTF2I is one of the main players. In addition, these findings show that the deletion of the fist 140 amino-acids of TFII-I altered it correct function leading to a clear phenotype, at both levels, at the cellular model and at the in vivo model.


Subject(s)
Abnormalities, Multiple/genetics , Transcription Factors, TFII/physiology , Williams Syndrome/genetics , Animals , Cognition Disorders/genetics , Craniofacial Abnormalities/genetics , Heterozygote , Homozygote , Hyperacusis/genetics , Mice , Mice, Mutant Strains , Phenotype , Sequence Deletion , Transcription Factors, TFII/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...