Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
J Natl Cancer Inst ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38852945

ABSTRACT

BACKGROUND: Breast cancer brain metastasis is a rising occurrence, necessitating a better understanding of the mechanisms involved for effective management. Breast cancer brain metastases diverge notably from the primary tumor, with gains in kinase and concomitant losses of steroid signaling observed. In this study, we explored the role of the kinase receptor RET in promoting breast cancer brain metastases and provide a rationale for targeting this receptor. METHODS: RET expression was characterized in a cohort of patients with primary and brain metastatic tumors. RET functionality was assessed using pharmacological inhibition and gene silencing in patient-derived brain metastatic tumor explants and in vivo models, organoid models, and brain organotypic cultures. RNA sequencing was used to uncover novel brain metastatic relevant RET mechanisms of action. RESULTS: A statistically significant enrichment of RET in brain metastases was observed in estrogen receptor-positive breast cancer, where it played a role in promoting cancer cell adhesion, survival, and outgrowth in the brain. In vivo, RET overexpression enhanced brain metastatic competency in patient-derived models. At a mechanistic level, RET overexpression was found to enhance the activation of gene programs involved in cell adhesion, requiring EGFR cooperation to deliver a pro-brain metastatic phenotype. CONCLUSION: Our results illustrate, for the first time, the role of RET in regulating colonization and outgrowth of breast cancer brain metastasis and provide data to support the use of RET inhibitors in the management strategy for patients with breast cancer brain metastases.

2.
Neuroimage Clin ; 42: 103616, 2024.
Article in English | MEDLINE | ID: mdl-38763039

ABSTRACT

PURPOSE: The main objective was to characterize the tracer uptake kinetics of [18F]fluoromethylcholine ([18F]F-CHO) in high-grade gliomas (HGG) through a full PET kinetic modeling approach. Secondarily, we aimed to explore the relationship between the PET uptake measures and the HGG molecular features. MATERIALS AND METHODS: Twenty-four patients with a suspected diagnosis of HGG were prospectively included. They underwent a dynamic brain [18F]F-CHO-PET/CT, from which a tumoral time-activity curve was extracted. The plasma input function was obtained through arterial blood sampling with metabolite correction. These data were fitted to 1- and 2-tissue-compartment models, the best of which was selected through the Akaike information criterion. We assessed the correlation between the kinetic parameters and the conventional static PET metrics (SUVmax, SUVmean and tumor-to-background ratio TBR). We explored the association between the [18F]F-CHO-PET quantitative parameters and relevant molecular biomarkers in HGG. RESULTS: Tumoral time-activity curves in all patients showed a rapid rise of [18F]F-CHO uptake followed by a plateau-like shape. Best fits were obtained with near-irreversible 2-tissue-compartment models. The perfusion-transport constant K1 and the net influx rate Ki showed strong correlation with SUVmax (r = 0.808-0.861), SUVmean (r = 0.794-0.851) and TBR (r = 0.643-0.784), p < 0.002. HGG was confirmed in 21 patients, of which those with methylation of the O-6-methylguanine-DNA methyltransferase (MGMT) gene promoter showed higher mean Ki (p = 0.020), K1 (p = 0.025) and TBR (p = 0.001) than the unmethylated ones. CONCLUSION: [18F]F-CHO uptake kinetics in HGG is best explained by a 2-tissue-compartment model. The conventional static [18F]F-CHO-PET measures have been validated against the perfusion-transport constant (K1) and the net influx rate (Ki) derived from kinetic modeling. A relationship between [18F]F-CHO uptake rate and MGMT methylation is suggested but needs further confirmation.


Subject(s)
Brain Neoplasms , Choline , Glioma , Humans , Glioma/diagnostic imaging , Glioma/metabolism , Middle Aged , Male , Female , Choline/analogs & derivatives , Choline/metabolism , Choline/pharmacokinetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Adult , Aged , Positron-Emission Tomography/methods , Kinetics , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Prospective Studies , Neoplasm Grading
3.
Cancer Discov ; 14(4): 669-673, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571430

ABSTRACT

SUMMARY: The field of cancer neuroscience has begun to define the contributions of nerves to cancer initiation and progression; here, we highlight the future directions of basic and translational cancer neuroscience for malignancies arising outside of the central nervous system.


Subject(s)
Neoplasms , Neurosciences , Humans , Central Nervous System , Forecasting , Proteomics
4.
Nat Commun ; 15(1): 3593, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678021

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease for which better therapies are urgently needed. Fibroblasts and macrophages are heterogeneous cell populations able to enhance metastasis, but the role of a macrophage-fibroblast crosstalk in regulating their pro-metastatic functions remains poorly understood. Here we deconvolve how macrophages regulate metastasis-associated fibroblast (MAF) heterogeneity in the liver. We identify three functionally distinct MAF populations, among which the generation of pro-metastatic and immunoregulatory myofibroblastic-MAFs (myMAFs) critically depends on macrophages. Mechanistically, myMAFs are induced through a STAT3-dependent mechanism driven by macrophage-derived progranulin and cancer cell-secreted leukaemia inhibitory factor (LIF). In a reciprocal manner, myMAF secreted osteopontin promotes an immunosuppressive macrophage phenotype resulting in the inhibition of cytotoxic T cell functions. Pharmacological blockade of STAT3 or myMAF-specific genetic depletion of STAT3 restores an anti-tumour immune response and reduces metastases. Our findings provide molecular insights into the complex macrophage-fibroblast interactions in tumours and reveal potential targets to inhibit PDAC liver metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Macrophages , Pancreatic Neoplasms , STAT3 Transcription Factor , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Animals , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/immunology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Macrophages/metabolism , Macrophages/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Humans , Mice , Cell Line, Tumor , Signal Transduction , Janus Kinases/metabolism , Mice, Inbred C57BL , Fibroblasts/metabolism , Fibroblasts/pathology , Male , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Female
5.
J Hazard Mater ; 471: 134442, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688222

ABSTRACT

To remove trace cisplatin from aqueous solution, commercial sponges were functionalized by esterification with 3-mercaptopropionic acid, followed by reduction with Na2S·9H2O or SnCl2·2H2O. The resulting thiol-functionalized sponges (TFSs), TFS_1 and TFS_2, were tested for the removal of cisplatin (235 µg L-1) achieving maximum removal of 95.5 ± 0.8% and 99.5 ± 0.1% respectively, which were significantly higher than the non-functionalized counterpart. The successful grafting of thiol groups, verified through FTIR, elemental analysis, SEM-EDS, and XPS characterization, facilitated Pt-S complexation during adsorption. The aqua-derivatives of cisplatin, formed through hydration, complexed with thiol sites through ligand displacement. Additionally, the presence of Sn/SnO2 coating on TFS_2 further enhanced the adsorption process. The rapid adsorption process conformed to pseudo-second-order kinetic model, involving both diffusion and chemisorption. While the Langmuir isotherm model generally described the monolayer adsorption behavior of cisplatin, the aggregation of Sn/SnO2 onto TFS_2 at 343 K introduced surface heterogeneity, rendering the Freundlich model a better fit for the adsorption isotherm. Differential pH dependence and the evaluation of mean free energy, derived from the Dubinin-Radushkevich isotherm model, indicated that cisplatin adsorption onto TFS_1 involved physisorption, including electrostatic attraction, while chemisorption predominated for TFS_2. Increasing the temperature notably promoted adsorption by facilitating the thermal-favored formation of Pt-S bonds.

6.
Food Chem ; 448: 139123, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552461

ABSTRACT

In the present work, liposomes have been used as nanocarriers in the biofortification of wheat plants with selenium (Se) through foliar application. Liposomal formulations were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and Phospholipon®90H (P90H) (average size <100 nm), loaded with different concentrations of inorganic Se (selenite and selenate) and applied twice to the plants in the stage of vegetative growth. Liposomes enhanced Se uptake by wheat plants compared to direct application. The highest Se enrichment was achieved using the phospholipid DPPC and a concentration of 1000 µmol·L-1 of Se without affecting the biomass, chlorophylls, carotenoids, and the concentration of mineral nutrients of the plants. The chemical speciation of Se in the plants was further investigated by X-ray absorption spectroscopy (XAS). The results from XAS spectra revealed that most of the inorganic Se was transformed to organic Se and that the use of liposomes influenced the proportion of C-Se-C over C-Se-Se-C species.


Subject(s)
Biofortification , Liposomes , Plant Leaves , Selenium , Triticum , Triticum/chemistry , Triticum/growth & development , Triticum/metabolism , Liposomes/chemistry , Selenium/chemistry , Selenium/metabolism , Selenium/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/growth & development , Nanoparticles/chemistry , Drug Carriers/chemistry
7.
J Agric Food Chem ; 72(9): 4947-4957, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38393752

ABSTRACT

The impact of selenium (Se) enrichment on bioactive compounds and sugars and Se speciation was assessed on different microgreens (green pea, red radish, and alfalfa). Sodium selenite and sodium selenate at a total concentration of 20 µM (1:1) lead to a noticeable Se biofortification (40-90 mg Se kg-1 DW). In green pea and alfalfa, Se did not negatively impact phenolics and antioxidant capacity, while in red radish, a significant decrease was found. Regarding photosynthetic parameters, Se notably increased the level of chlorophylls and carotenoids in green pea, decreased chlorophyll levels in alfalfa, and had no effect on red radish. Se treatment significantly increased sugar levels in green pea and alfalfa but not in red radish. Red radish had the highest Se amino acid content (59%), followed by alfalfa (34%) and green pea (28%). These findings suggest that Se-biofortified microgreens have the potential as functional foods to improve Se intake in humans.


Subject(s)
Raphanus , Selenium , Humans , Selenium/metabolism , Raphanus/chemistry , Pisum sativum , Medicago sativa/metabolism , Chlorophyll , Phytochemicals
8.
Neuro Oncol ; 26(6): 1052-1066, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38271182

ABSTRACT

BACKGROUND: Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether the BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS: We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS: RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS: Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.


Subject(s)
Astrocytes , Brain Neoplasms , Chitinase-3-Like Protein 1 , Neoplasm Invasiveness , STAT3 Transcription Factor , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Humans , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/genetics , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Astrocytes/metabolism , Astrocytes/pathology , Mice , Mice, Transgenic , Cell Proliferation , Xenograft Model Antitumor Assays , Tumor Cells, Cultured
9.
Trends Cancer ; 10(1): 1-4, 2024 01.
Article in English | MEDLINE | ID: mdl-37802739

ABSTRACT

Multidisciplinary patient-centered networks offer access to difficult-to-get samples and initiate projects from human material. Improving such networks to include 'living' samples could be transformative, not only for research but for clinical trial design, especially when focused on unmet clinical needs, such as brain metastasis.


Subject(s)
Biomedical Research , Brain Neoplasms , Humans
10.
Plant Physiol Biochem ; 206: 108283, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142664

ABSTRACT

Kale (Brassica oleracea L. var. sabellica L.), kohlrabi (Brassica oleracea L. var. gongylodes L.) and wheat (Triticum aestivum L. cv. Bancal) microgreens were cultivated in presence of selenium 20 µmol L-1 as sodium selenite and sodium selenate mixture. The influence of this biofortification process was evaluated in terms of biomass production, total Se, macro- and micronutrients concentration, polyphenols, antioxidant activity, chlorophylls and carotenoids levels and total soluble proteins content. The results obtained have shown a significant concentration of total Se in the biofortified microgreens of kale (133 µg Se·g-1 DW) and kohlrabi (127 µg Se·g-1 DW) higher than that obtained for wheat (28 µg Se·g-1 DW). The Se uptake in all the species did not produce oxidative damage to the plants reflected in the bioactive compounds, antioxidant capacity or pigments concentration. These Se-enriched microgreens may contribute to the recommended intake of this nutrient in human diet as to overcome Se-deficiency.


Subject(s)
Brassica , Selenium , Humans , Selenium/pharmacology , Selenium/metabolism , Biofortification/methods , Antioxidants/metabolism , Brassica/metabolism , Phytochemicals/metabolism , Nutrients
11.
Sci Rep ; 13(1): 21132, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38036518

ABSTRACT

Mercury (Hg) pollution in agricultural soils and its potential pathway to the human food chain can pose a serious health concern. Understanding the pathway of Hg in plants and how the speciation may change upon interaction with other elements used for biofortification can be critical to assess the real implications for the final plant-based product. In that respect, selenium (Se) biofortification of crops grown in Se-poor soil regions is becoming a common practice to overcome Se deficient diets. Therefore, it is important to assess the interplay between these two elements since Se may form complexes with Hg reducing its bioavailability and toxicity. In this work, the speciation of Hg in wheat plants grown hydroponically under the presence of Hg (HgCl2) and biofortified with Se (selenite, selenate, or a 1:1 mixture of both) has been investigated by X-ray absorption spectroscopy at the Hg L3-edge. The main Hg species found in wheat grains was the highly toxic methylmercury. It was found that the Se-biofortification of wheat did not prevent, in general, the Hg translocation to grains. Only the 1:1 mixture treatment seemed to have an effect in reducing the levels of Hg and the presence of methylmercury in grains.


Subject(s)
Mercury , Methylmercury Compounds , Selenium , Humans , Selenium/metabolism , Mercury/toxicity , Mercury/metabolism , Methylmercury Compounds/toxicity , Methylmercury Compounds/metabolism , Triticum/metabolism , Soil/chemistry , Crops, Agricultural/metabolism
12.
Cancer Cell ; 41(9): 1637-1649.e11, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37652007

ABSTRACT

A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/genetics , Brain , Gene Expression Profiling , Machine Learning , Mutation
13.
Mikrochim Acta ; 190(8): 285, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418024

ABSTRACT

Plastics with nanosize (nanoplastics, NPLs) must be characterized, since they can be toxic or act as carriers of organic and inorganic pollutants, but there is a lack of reference materials and validated methods in the nanosize range. Therefore, this study has focused on the development and validation of a separation and size characterization methodology of polystyrene latex nanospheres, by using an asymmetric-flow field flow fraction system coupled to multi-angle light scattering and ultraviolet-visible detectors (AF4-MALS-UV). Hence, this work presents a fully validated methodology in the particle size range 30 to 490 nm, with bias between 95 and 109%, precision between 1 and 18%, LOD and LOQ below 0.2 and 0.3 µg respectively, except for 30-nm standard, for both detectors, and showing stable results for 100 analyses.


Subject(s)
Microplastics , Polystyrenes , Plastics , Water
14.
NPJ Syst Biol Appl ; 9(1): 35, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479705

ABSTRACT

Tumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models with bounded-growth dynamics accurately. However, results for the growth of human cancers in patients are scarce. Our study mined a large dataset of 1133 brain metastases (BMs) with longitudinal imaging follow-up to find growth laws for untreated BMs and recurrent treated BMs. Untreated BMs showed high growth exponents, most likely related to the underlying evolutionary dynamics, with experimental tumors in mice resembling accurately the disease. Recurrent BMs growth exponents were smaller, most probably due to a reduction in tumor heterogeneity after treatment, which may limit the tumor evolutionary capabilities. In silico simulations using a stochastic discrete mesoscopic model with basic evolutionary dynamics led to results in line with the observed data.


Subject(s)
Biological Phenomena , Brain Neoplasms , Humans , Animals , Mice , Brain Neoplasms/therapy , Computer Simulation
15.
Sci Total Environ ; 891: 164385, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37244605

ABSTRACT

To efficiently remove trace Pt-based cytostatic drugs (Pt-CDs) from aqueous environments, a comparative investigation was conducted on the adsorption behavior of three commercial adsorbents including cysteine-functionalized silica gel (Si-Cys), 3-(diethylenetriamino) propyl-functionalized silica gel (Si-DETA) and open-celled cellulose MetalZorb® sponge (Sponge). The research on the adsorption of cisplatin and carboplatin encompasses investigations of pH dependence, adsorption kinetics, adsorption isotherms, and adsorption thermodynamics. The obtained results were compared with those of PtCl42- to better understand the adsorption mechanisms. The adsorption of cisplatin and carboplatin by Si-Cys was significantly better than Si-DETA and Sponge, which suggested that in chelation-dominated chemisorption, thiol groups provided high-affinity sites for Pt(II) complexation. Adsorption of the anion PtCl42- was more pH dependent and generally superior to that of cisplatin and carboplatin, benefiting from the contribution of ion association with protonated surfaces. The removal process of aqueous Pt(II) compounds occurred by the hydrolysis of complexes in solution and subsequent adsorption, and the specific adsorption process was explained by the synergistic action of ion association and chelation mechanisms. The rapid adsorption processes involving diffusion and chemisorption were well described by pseudo-second-order kinetic model. The isotherm studies suggested monolayer adsorption, consistent with the Langmuir model. Indicated from the adsorption enthalpy results, the chelation of cisplatin and carboplatin with thiol groups was an endothermic reaction, while the adsorption of PtCl42- was exothermic. At 343 K, Si-Cys achieved 98.5 ± 0.1 % (cisplatin) and 94.1 ± 0.1 % (carboplatin) removal. To validate the obtained findings, the described process was applied to urine samples doped with Pt-CDs as analog of hospital wastewaters and the removal was very efficient, ranging from 72 ± 1 % to 95 ± 1 %, when using Si-Cys as adsorbent, although limited matrix effects were observed.


Subject(s)
Cytostatic Agents , Water Pollutants, Chemical , Platinum , Cysteine , Polyethyleneimine , Adsorption , Cisplatin , Carboplatin , Silica Gel , DEET , Thermodynamics , Water , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
16.
STAR Protoc ; 4(2): 102194, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37031412

ABSTRACT

Organotypic brain cultures are short-term assays that phenotypically and functionally recapitulate brain metastatic cells in vivo. Here, we present a protocol to generate murine organotypic brain cultures for drug screening. We describe steps for sectioning of murine brains and plating of organotypic cultures. We then detail evaluation of the anti-metastatic effect of chemical compounds through bioluminescence imaging before and after drug treatment. Combined with downstream applications, this protocol allows comprehensive characterizations of both cancer cells and the tumor-associated microenvironment. For complete details on the use and execution of this protocol, please refer to Zhu et al. (2022).1.

17.
Mikrochim Acta ; 190(4): 125, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894805

ABSTRACT

Olivetol (OLV), as a cannabidiol (CBD) analog, was incorporated in γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes as potential analgesic drug delivery systems (DDS) for dental hypersensitivity (DH) treatment. These DDS have been scarcely employed in oral health, being the first time in case of MOFs loaded with cannabinoids. In vitro experiments using bovine teeth were performed to verify if the drug is able to reach the dentin, where it can flow to the pulp tissues and exert its analgesic effect; enamel and dentin regions were analyzed by synchrotron radiation-based FTIR microspectroscopy. Principal component analysis (PCA) was used to process the spectroscopic data as a powerful chemometric tool, and it revealed a similar behavior in both regions. The studied DDS have been characterized by different techniques, and is was demonstrated that DDS is an efficient way to carry the drug through dental tissues without compromising their structure.


Subject(s)
Cannabinoids , Metal-Organic Frameworks , gamma-Cyclodextrins , Animals , Cattle , Liposomes/chemistry , Metal-Organic Frameworks/chemistry , gamma-Cyclodextrins/chemistry , Delayed-Action Preparations , Oral Health
18.
Physiol Plant ; 175(1): e13843, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36538026

ABSTRACT

Wheat can be biofortified with different inorganic selenium (Se) forms, selenite or selenate. The choice of Se source influences the physiological response of the plant and the Se metabolites produced. We looked at selenium uptake, distribution and metabolization in wheat exposed to selenite, selenate and a 1:1 molar mixture of both to determine the impact of each treatment on the Se speciation in roots, shoots, and grains. To achieve a comprehensive quantification of the Se species, the complementarity of high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy was exploited. This approach allowed the identification of the six main selenium species: selenomethionine, selenocysteine, selenocystine, selenite, selenate, and elemental selenium. The three treatments resulted in similar total selenium concentration in grains, 90-150 mg Se kg-1 , but produced different effects in the plant. Selenite enhanced root accumulation (66% of selenium) and induced the maximum toxicity, whereas selenate favored shoot translocation (46%). With the 1:1 mixture, selenium was distributed along the plant generating lower toxicity. Although all conditions resulted in >92% of organic selenium in the grain, selenate produced mainly C-Se-C forms, such as selenomethionine, while selenite (alone or in the mixture) enhanced the production of C-Se-Se-C forms, such as selenocystine, modifying the selenoamino acid composition. These results provide a better understanding of the metabolization of selenium species which is key to minimize plant toxicity and any concomitant effect that may arise due to Se-biofortification.


Subject(s)
Selenium , Selenium/analysis , Selenium/metabolism , Selenomethionine/metabolism , Selenic Acid/metabolism , Triticum/metabolism , Selenious Acid/metabolism
19.
Adv Mater ; 35(11): e2200902, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36479741

ABSTRACT

Integration of plasmonic nanostructures with fiber-optics-based neural probes enables label-free detection of molecular fingerprints via surface-enhanced Raman spectroscopy (SERS), and it represents a fascinating technological horizon to investigate brain function. However, developing neuroplasmonic probes that can interface with deep brain regions with minimal invasiveness while providing the sensitivity to detect biomolecular signatures in a physiological environment is challenging, in particular because the same waveguide must be employed for both delivering excitation light and collecting the resulting scattered photons. Here, a SERS-active neural probe based on a tapered optical fiber (TF) decorated with gold nanoislands (NIs) that can detect neurotransmitters down to the micromolar range is presented. To do this, a novel, nonplanar repeated dewetting technique to fabricate gold NIs with sub-10 nm gaps, uniformly distributed on the wide (square millimeter scale in surface area), highly curved surface of TF is developed. It is experimentally and numerically shown that the amplified broadband near-field enhancement of the high-density NIs layer allows for achieving a limit of detection in aqueous solution of 10-7  m for rhodamine 6G and 10-5  m for serotonin and dopamine through SERS at near-infrared wavelengths. The NIs-TF technology is envisioned as a first step toward the unexplored frontier of in vivo label-free plasmonic neural interfaces.


Subject(s)
Metal Nanoparticles , Nanostructures , Optical Fibers , Gold/chemistry , Spectrum Analysis, Raman/methods , Nanostructures/chemistry , Neurotransmitter Agents , Metal Nanoparticles/chemistry
20.
Molecules ; 29(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202645

ABSTRACT

Increasing levels of boron in water exceeding acceptable thresholds have triggered concerns regarding environmental pollution and adverse health effects. In response, significant efforts are being made to develop new adsorbents for the removal of boron from contaminated water. Among the various materials proposed, inorganic adsorbents have emerged as promising materials due to their chemical, thermal, and mechanical stability. This review aims to comprehensively examine recent advances made in the development of inorganic adsorbents for the efficient removal of boron from water. Firstly, the adsorption performance of the most used adsorbents, such as magnesium, iron, aluminum, and individual and mixed oxides, are summarized. Subsequently, diverse functionalization methods aimed at enhancing boron adsorption capacity and selectivity are carefully analyzed. Lastly, challenges and future perspectives in this field are highlighted to guide the development of innovative high-performance adsorbents and adsorption systems, ultimately leading to a reduction in boron pollution.

SELECTION OF CITATIONS
SEARCH DETAIL
...