Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(9): e0184789, 2017.
Article in English | MEDLINE | ID: mdl-28931089

ABSTRACT

The modern Western diet is rich in advanced glycation end products (AGEs). We have previously shown an association between dietary AGEs and markers of inflammation and oxidative stress in a population of end stage renal disease (ESRD) patients undergoing peritoneal dialysis (PD). In the current pilot study we explored the effects of dietary AGEs on the gut bacterial microbiota composition in similar patients. AGEs play an important role in the development and progression of cardiovascular (CVD) disease. Plasma concentrations of different bacterial products have been shown to predict the risk of incident major adverse CVD events independently of traditional CVD risk factors, and experimental animal models indicates a possible role AGEs might have on the gut microbiota population. In this pilot randomized open label controlled trial, twenty PD patients habitually consuming a high AGE diet were recruited and randomized into either continuing the same diet (HAGE, n = 10) or a one-month dietary AGE restriction (LAGE, n = 10). Blood and stool samples were collected at baseline and after intervention. Variable regions V3-V4 of 16s rDNA were sequenced and taxa was identified on the phyla, genus, and species levels. Dietary AGE restriction resulted in a significant decrease in serum Nε-(carboxymethyl) lysine (CML) and methylglyoxal-derivatives (MG). At baseline, our total cohort exhibited a lower relative abundance of Bacteroides and Alistipes genus and a higher abundance of Prevotella genus when compared to the published data of healthy population. Dietary AGE restriction altered the bacterial gut microbiota with a significant reduction in Prevotella copri and Bifidobacterium animalis relative abundance and increased Alistipes indistinctus, Clostridium citroniae, Clostridium hathewayi, and Ruminococcus gauvreauii relative abundance. We show in this pilot study significant microbiota differences in peritoneal dialysis patients' population, as well as the effects of dietary AGEs on gut microbiota, which might play a role in the increased cardiovascular events in this population and warrants further studies.


Subject(s)
Cardiovascular Diseases/etiology , Diet/adverse effects , Gastrointestinal Microbiome/drug effects , Glycation End Products, Advanced/adverse effects , Kidney Failure, Chronic/complications , Peritoneal Dialysis/adverse effects , Feces/microbiology , Female , Glycation End Products, Advanced/analysis , Humans , Male , Middle Aged , Pilot Projects
2.
Biochemistry ; 52(30): 5103-5116, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23837633

ABSTRACT

We have shown previously, using confocal imaging and transport assays, that the N-terminus of sodium-dependent vitamin C transporter 2 (SVCT2) can redirect apical SVCT1 to the basolateral membrane. Here, the SVCT model was used to further characterize the basolateral targeting peptide signal. Both the length (31 amino acids) and sequence accuracy of the N-terminus of SVCT2 were found to be important in basolateral targeting activity, suggesting a structural requirement. However, the N-terminal basolateral targeting sequence did not appear to act alone, based on analyses of heterologous chimeras. Although diverse N-terminal basolateral targeting signals from multipass membrane proteins can all redirect apical protein from the same gene family to the basolateral membrane, none of the N-terminal basolateral targeting signals can redirect the transmembrane and C-terminal regions from a different gene family. Instead, the presence of these heterologous N-terminal basolateral targeting signals affected the trafficking of otherwise apical protein, causing their accumulation in a stable tubulin-like non-actin structure. Nontargeting N-terminal sequences had no effect. Similar protein retention was observed previously and in this study when the C-terminus of apical or basolateral protein was mutated. These results suggest that the N- and C-termini interact, directly or indirectly, within each gene family for basolateral targeting. Circular dichroism and two-dimensional nuclear magnetic resonance analyses both found a lack of regular secondary structure in the conserved N-terminus of SVCT2, consistent with the presence of partner(s) in the targeting unit. Our finding, a departure from the prevailing single-peptide motif model, is consistent with the evolution of basolateral transporters from the corresponding apical genes. The interaction among the N-terminus, its partner(s), and the cellular basolateral targeting machinery needs to be further elucidated.


Subject(s)
Cell Membrane/metabolism , Models, Biological , Protein Sorting Signals , Sodium-Coupled Vitamin C Transporters/metabolism , Amino Acid Sequence , Animals , Cell Polarity , Conserved Sequence , Dogs , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Madin Darby Canine Kidney Cells , Mutant Chimeric Proteins/chemistry , Mutant Chimeric Proteins/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Transport , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sodium-Coupled Vitamin C Transporters/chemistry , Sodium-Coupled Vitamin C Transporters/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...