Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chempluschem ; 89(6): e202300717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38406894

ABSTRACT

Two BODIPY-C60-peptide assemblies were synthesized by CuAAC reactions of BODIPY-C60 dyads and a helical peptide functionalized with a terminal alkyne group and an azide group, respectively. The helical peptide within these assemblies was functionalized at its other end by a disulfide group, allowing formation of self-assembled monolayers (SAMs) on gold surfaces. Characterizations of these SAMs, as well as those of reference molecules (BODIPY-C60-alkyl, C60-peptide and BODIPY-peptide), were carried out by PM-IRRAS and cyclic voltammetry. BODIPY-C60-peptide SAMs are more densely packed than BODIPY-C60-alkyl and BODIPY-peptide based SAMs. These findings were attributed to the rigid peptide helical conformation along with peptide-peptide and C60-C60 interactions within the monolayers. However, less dense monolayers were obtained with the target assemblies compared to the C60-peptide, as the BODIPY entity likely disrupts organization within the monolayers. Finally, electron transfer kinetics measurements by ultra-fast electrochemistry experiments demonstrated that the helical peptide is a better electron mediator in comparison to alkyl chains. This property was exploited along with those of the BODIPY-C60 dyads in a photo-current generation experiment by converting the resulting excited and/or charge separated states from photo-illumination of the dyad into electrical energy.

2.
J Phys Chem B ; 124(42): 9396-9410, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32897728

ABSTRACT

A new donor-acceptor dyad composed of a BODIPY (4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene) donor and a fullerene C60 acceptor has been synthesized and characterized. This derivative has been prepared using a clickable fullerene building block that bears an alkyne moiety and a maleimide unit. The post-functionalization of the maleimide group by a BODIPY thiol leads to a BODIPY-C60 dyad, leaving the alkyne moiety for further functional arrangement. On the basis of the combination of semi-empirical and density functional theory (DFT) calculations, spectroelectrochemical experiments, and steady-state and time-resolved spectroscopies, the photophysical properties of this new BODIPY-C60 dyad were thoroughly studied. By using semi-empirical calculations, the equilibrium of three conformations of the BODIPY-C60 dyad has been deduced, and their molecular orbital structures have been analyzed using DFT calculations. Two short fluorescence lifetimes were attributed to two extended conformers displaying variable donor-acceptor distances (17.5 and 20.0 Å). Additionally, the driving force for photoinduced electron transfer from the singlet excited state of BODIPY to the C60 moiety was calculated using redox potentials determined with electrochemical studies. Spectroelectrochemical measurements were also carried out to investigate the absorption profiles of radicals in the BODIPY-C60 dyad in order to assign the transient species in pump-probe experiments. Under selective photoexcitation of the BODIPY moiety, occurrences of both energy and electron transfers were demonstrated for the dyad by femtosecond and nanosecond transient absorption spectroscopies. Photoinduced electron transfer occurs in the folded conformer, while energy transfer is observed in extended conformers.

3.
Chemistry ; 25(63): 14349-14357, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31392799

ABSTRACT

The synthesis of TBA-DASA-POM-DASA, the first photoactive covalent hybrid polyoxometalate (POM) incorporating a donor-acceptor Stenhouse adduct (DASA) reverse photochrome, is presented. It has been evidenced that in solution the equilibrium between the colorless cyclopentenone and the highly colored triene conformers is strongly dependent not only on the nature of the solvent but also the countercations, allowing to tune its optical properties. This complex has been further associated to photochromic spironaphtoxazine cations, resulting in a material which can be activated by two distinct optical stimuli. Moreover, when combined with N-methyldiethanolamine, TBA-DASA-POM-DASA constitutes a performing photoinitiating system for polyethylene glycol diacrylate polymerization and under visible light irradiation, a promising result in a domain scarcely developed in POM chemistry.

4.
Beilstein J Org Chem ; 13: 648-658, 2017.
Article in English | MEDLINE | ID: mdl-28487759

ABSTRACT

Aniline-terminated self-assembled monolayers (SAMs) on gold surfaces have successfully reacted with ArSO2NHOSO2Ar (Ar = 4-MeC6H4 or 4-FC6H4) resulting in monolayers with sulfamide moieties and different end groups. Moreover, the sulfamide groups on the SAMs can be hydrolyzed showing the partial regeneration of the aniline surface. SAMs were characterized by water contact angle (WCA) measurements, Fourier-transform infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS).

5.
J Org Chem ; 81(18): 8222-33, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27518495

ABSTRACT

In this study, the functionalization of a fullerene building block in a stepwise process by means of the copper-catalyzed alkyne-azide cycloaddition (CuAAC) and thiol-maleimide reactions is reported. Grafting of the fullerene platform with a variety of azido derivatives, including Bodipy, pyrene and ferrocene, was carried out first. These fullerene compounds were then reacted with thiol derivatives to yield sophisticated structures comprising photo- and/or electroactive fullerodendrimers and cysteine-functionalized fullerene assemblies. This strategy, which combines the CuAAC and thiol-maleimide processes, could become more widely adopted in the field of fullerene chemistry.

6.
Colloids Surf B Biointerfaces ; 109: 136-42, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23624282

ABSTRACT

In this work, the influence of surface charge and layer rigidity on Bovin Serum Albumin (BSA) adsorption has been investigated. To this aim, Self Assembled Monolayers (SAMs) bearing terminal COOH or COO(-) groups were built on gold surfaces. The rigidity of the acid terminated SAMs was modified using either an aliphatic, mercaptoundecanoic acid (MUA), or an aromatic, mercaptobenzoic acid (MBA) thiol. X-Ray Photoelectron Spectroscopy (XPS), Polarization Modulation Reflection Absorption Infrared Spectroscopy (PM-RAIRS) and contact angle measurements, were used to deeply characterize the so-built layers. The surface charge was successfully modified by varying the pH of the rinsing solution. Indeed, COOH were the dominating species upon rinsing at pH 2 and COO(-) species dominated upon rinsing at pH 11. Rinsing at an intermediate pH, 5.5, led to the coexistence of both carboxylic and carboxylate moieties. The hydrophilic character of the surface was also found to depend on the rinsing pH, with a minimum after rinsing at intermediate pH. Using aromatic or aliphatic thiols did not affect the speciation but led to considerable differences in the hydrophilic character of these surfaces. Eventually, the adsorption of BSA on the acidic layers was investigated using PM-RAIRS. The results showed interesting differences between the charged layers. Thus, for both MUA and MBA -based SAMs, the amount of adsorbed proteins decreased when the amount of COO(-) on the surface increased. Interestingly, these effects were totally annihilated when the adsorption was carried out in PBS buffer. Moreover, for similar surface charges, the aromatic layers were able to bind higher amounts of proteins than the aliphatic ones. This work points out the key role of both surface charge and rigidity on protein adsorption. The influence of additional parameters, such as hydrophilicity and SAMs' rigidity is also established.


Subject(s)
Benzoates/chemistry , Fatty Acids/chemistry , Serum Albumin, Bovine/chemistry , Static Electricity , Sulfhydryl Compounds/chemistry , Adsorption , Animals , Cattle , Gold/chemistry , Particle Size , Surface Properties
7.
Nat Mater ; 11(8): 724-33, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22751179

ABSTRACT

The involvement of collagen in bone biomineralization is commonly admitted, yet its role remains unclear. Here we show that type I collagen in vitro can initiate and orientate the growth of carbonated apatite mineral in the absence of any other vertebrate extracellular matrix molecules of calcifying tissues. We also show that the collagen matrix influences the structural characteristics on the atomic scale, and controls the size and the three-dimensional distribution of apatite at larger length scales. These results call into question recent consensus in the literature on the need for Ca-rich non-collagenous proteins for collagen mineralization to occur in vivo. Our model is based on a collagen/apatite self-assembly process that combines the ability to mimic the in vivo extracellular fluid with three major features inherent to living bone tissue, that is, high fibrillar density, monodispersed fibrils and long-range hierarchical organization.


Subject(s)
Apatites/chemistry , Bone Development/physiology , Bone and Bones/chemistry , Collagen Type I/chemistry , Animals , Bone and Bones/ultrastructure , Calcification, Physiologic/physiology , Collagen Type I/ultrastructure , Humans , Rats , Sheep , Tail , Tendons
8.
J Am Chem Soc ; 134(15): 6579-83, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22471692

ABSTRACT

Adsorption of biomolecules at metal surfaces often creates two-dimensional ordering of the adlayers. However, metal substrate reconstruction is less commonly observed, unless upon annealing of the molecule-surface system. Here, we report on the drastic room-temperature reconstruction of the Au(111) surface, driven by the adsorption of insulin growth factor tripeptide molecules. Scanning tunneling microscopy images show that the surface reconstruction, which takes place without annealing the system, is dynamic and evolves over time. It is initiated at kinks and steps edges, but the reconstruction also takes place within defect-free terraces. Theoretical calculations are performed to explain the reconstruction at the molecular level.


Subject(s)
Gold/chemistry , Somatomedins/chemistry , Adsorption , Oligopeptides/chemistry , Surface Properties
9.
J Phys Condens Matter ; 23(48): 484002, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22085831

ABSTRACT

Molecular interaction with metal surfaces raises fundamental questions regarding their binding tendency, their dispersion on the surface, as well as their conformation which may change their biological properties; addressing these questions, and being able to tune protein interactions, is of primary importance for the control of biointerfaces. In this study, one tripeptide, GSH (glu-cys-gly), was used to condition gold surfaces and thus influence the adsorption of bovine serum albumin (BSA). Depending on the pH value of the GSH solution, cationic, zwitterionic or anionic forms of the tripeptide could be stabilised on the surface, before interacting with BSA solutions. The amount of proteins was observed to depend both on the chemical state of the adsorbed underlying peptide and on the solvent of the protein solution, indicating an important role of electrostatic interactions upon protein adsorption. Moreover, atomic force microscopy (AFM), and synchrotron IR microscopy revealed a heterogeneous distribution of proteins on the GSH layer.


Subject(s)
Glutathione/chemistry , Gold/chemistry , Serum Albumin, Bovine/chemistry , Adsorption , Animals , Cattle , Protein Conformation , Surface Properties
10.
Acc Chem Res ; 43(10): 1297-306, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20672797

ABSTRACT

Increasing interest in bio-interfaces for medical, diagnostic, or biotechnology applications has highlighted the critical scientific challenge behind both the understanding and control of protein-solid surface interactions. In this context, this Account focuses on the molecular-level characterization of the interactions of peptides, ranging in size from a few amino acids to long sequences, with metal and oxide surfaces. In this Account, we attempt to fill the gap between the well-known basic studies of the interaction of a single amino acid with well-defined metal surfaces and the investigations aimed at controlling biocompatibility or biofilm growth processes. We gather studies performed with surface science tools and macroscopic characterization techniques along with those that use modeling methods, and note the trends that emerge. Sulfur drives the interaction of cysteine-containing peptides with metal surfaces, particularly gold. Moreover, intermolecular interactions, such as hydrogen bonds may induce surface self assembly and chiral arrangements of the peptide layer. Depending on the solvent pH and composition, carboxylates or amino groups may also interact with the surface, which could involve conformational changes in the adsorbed peptide. On oxide surfaces such as titania or silica, researchers have identified carboxylate groups as the preferential peptide binding groups because of their strong electrostatic interactions with the charged surface. In high molecular weight peptides, systematic studies of their interaction with various oxide surfaces point to the preferential interaction of certain peptide sequences: basic residues such as arginine assume a special role. Researchers have successfully used these observations to synthesize adhesive sequences and initiate biomineralization. Studies of the interaction of peptides with nanoparticles have revealed similar binding trends. Sulfur-containing peptides adhere preferentially to gold nanoparticles. Peptides containing aromatic nitrogen also display a high affinity for various inorganic nanoparticles. Finally, we describe a novel class of peptides, genetically engineered peptides for inorganics (GEPIs), which are selected from a phage display protocol for their high binding affinity for inorganic surfaces. Extended investigations have focused on the mechanisms of the molecular binding of these peptides to solid surfaces, in particular the high binding affinity of some sulfur-free sequences of GEPIs to gold or platinum surfaces. We expect that this clearer view of the possible preferential interactions between peptides and inorganic surfaces will facilitate the development of new, more focused research in various fields of biotechnology, such as biocompatibility, biomimetics, or tissue engineering.


Subject(s)
Metals/chemistry , Oxides/chemistry , Peptides/chemistry , Adsorption , Amino Acid Sequence , Glutathione/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Surface Properties , Titanium/chemistry
11.
Proc Natl Acad Sci U S A ; 100(16): 9377-82, 2003 Aug 05.
Article in English | MEDLINE | ID: mdl-12871995

ABSTRACT

Anomalously warm sea-surface temperatures (SSTs) are associated with interannual and decadal variability as well as with long-term climate changes indicative of global warming. Such oscillations could precipitate changes in a variety of oceanic processes to affect marine species worldwide. As global temperatures continue to rise, it will be critically important to be able to predict the effects of such changes on species' abundance, distribution, and ecological relationships so as to identify vulnerable populations. Off the coast of British Columbia, warm SSTs have persisted through the last two decades. Based on 16 years of reproductive data collected between 1975 and 2002, we show that the extreme variation in reproductive performance exhibited by tufted puffins (Fratercula cirrhata) was related to changes in SST both within and among seasons. Especially warm SSTs corresponded with drastically decreased growth rates and fledging success of puffin nestlings. Puffins may partially compensate for within-season changes associated with SST by adjusting their breeding phenology, yet our data also suggest that they are highly vulnerable to the effects of climate change at this site and may serve as a valuable indicator of biological change in the North Pacific. Further and prolonged increases in ocean temperature could make Triangle Island, which contains the largest tufted puffin colony in Canada, unsuitable as a breeding site for this species.


Subject(s)
Birds/physiology , Climate , Animals , Ecology , Oceans and Seas , Reproduction , Seasons , Sexual Behavior , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...