Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 15: 740282, 2021.
Article in English | MEDLINE | ID: mdl-35140581

ABSTRACT

The transient histaminergic system is among the first neurotransmitter systems to appear during brain development in the rat mesencephalon/rhombencephalon. Histamine increases FOXP2-positive deep-layer neuron differentiation of cortical neural stem cells through H1 receptor activation in vitro. The in utero or systemic administration of chlorpheniramine (H1 receptor antagonist/inverse agonist) during deep-layer cortical neurogenesis decreases FOXP2 neurons in the developing cortex, and H1R- or histidine decarboxylase-knockout mice show impairment in learning and memory, wakefulness and nociception, functions modulated by the cerebral cortex. Due to the role of H1R in cortical neural stem cell neurogenesis, the purpose of this study was to evaluate the postnatal impact of the systemic administration of chlorpheniramine during deep-layer cortical neuron differentiation (E12-14) in the primary motor cortex (M1) of neonates (P0) and 21-day-old pups (P21). Chlorpheniramine or vehicle were systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats at gestational days 12-14, and the expression and distribution of deep- (FOXP2 and TBR1) and superficial-layer (SATB2) neuronal cortical markers were analyzed in neonates from both groups. The qRT-PCR analysis revealed a reduction in the expression of Satb2 and FoxP2. However, Western blot and immunofluorescence showed increased protein levels in the chlorpheniramine-treated group. In P21 pups, the three markers showed impaired distribution and increased immunofluorescence in the experimental group. The Sholl analysis evidenced altered dendritic arborization of deep-layer neurons, with lower excitability in response to histamine, as evaluated by whole-cell patch-clamp recording, as well as diminished depolarization-evoked [3H]-glutamate release from striatal slices. Overall, these results suggest long-lasting effects of blocking H1Rs during early neurogenesis that may impact the pathways involved in voluntary motor activity and cognition.

2.
Front Cell Dev Biol ; 8: 564561, 2020.
Article in English | MEDLINE | ID: mdl-33042999

ABSTRACT

Maternal diabetes has been related to low verbal task scores, impaired fine and gross motor skills, and poor performance in graphic and visuospatial tasks during childhood. The primary motor cortex is important for controlling motor functions, and embryos exposed to high glucose show changes in cell proliferation, migration, and differentiation during corticogenesis. However, the existing studies do not discriminate between embryos with or without neural tube defects, making it difficult to conclude whether the reported changes are related to neural tube defects or other anomalies. Furthermore, postnatal effects on central nervous system cytoarchitecture and function have been scarcely addressed. Through molecular, biochemical, morphological, and electrophysiological approaches, we provide evidence of impaired primary motor cerebral cortex lamination and neuronal function in pups from diabetic rats, showing an altered distribution of SATB2, FOXP2, and TBR1, impaired cell migration and polarity, and decreased excitability of deep-layer cortical neurons, suggesting abnormalities in cortico-cortical and extra-cortical innervation. Furthermore, phase-plot analysis of action potentials suggests changes in the activity of potassium channels. These results indicate that high-glucose insult during development promotes complex changes in migration, neurogenesis, cell polarity establishment, and dendritic arborization, which in turn lead to reduced excitability of deep-layer cortical neurons.

3.
Article in English | MEDLINE | ID: mdl-30483218

ABSTRACT

The purpose of this review was to search for experimental or clinical evidence on the effect of hyperglycemia in fetal programming to neurological diseases, excluding evident neural tube defects. The lack of timely diagnosis and the inadequate control of diabetes during pregnancy have been related with postnatal obesity, low intellectual and verbal coefficients, language and motor deficits, attention deficit with hyperactivity, problems in psychosocial development, and an increased predisposition to autism and schizophrenia. It has been proposed that several childhood or adulthood diseases have their origin during fetal development through a phenomenon called fetal programming. However, not all the relationships between the outcomes mentioned above and diabetes during gestation are clear, well-studied, or have been related to fetal programming. To understand this relationship, it is imperative to understand how developmental processes take place in health, in order to understand how the functional cytoarchitecture of the central nervous system takes place; to identify changes prompted by hyperglycemia, and to correlate them with the above postnatal impaired functions. Although changes in the establishment of patterns during central nervous system fetal development are related to a wide variety of neurological pathologies, the mechanism by which several maternal conditions promote fetal alterations that contribute to impaired neural development with postnatal consequences are not clear. Animal models have been extremely useful in studying the effect of maternal pathologies on embryo and fetal development, since obtaining central nervous system tissue in humans with normal appearance during fetal development is an important limitation. This review explores the state of the art on this topic, to help establish the way forward in the study of fetal programming under hyperglycemia and its impact on neurological and psychiatric disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...