Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1179701, 2023.
Article in English | MEDLINE | ID: mdl-37275246

ABSTRACT

Wheat production and end-use quality are severely threatened by drought and heat stresses. This study evaluated stress impacts on phenotypic and gluten protein characteristics of eight spring wheat genotypes (Diskett, Happy, Bumble, SW1, SW2, SW3, SW4, and SW5) grown to maturity under controlled conditions (Biotron) using RGB imaging and size-exclusion high-performance liquid chromatography (SE-HPLC). Among the stress treatments compared, combined heat-drought stress had the most severe negative impacts on biomass (real and digital), grain yield, and thousand kernel weight. Conversely, it had a positive effect on most gluten parameters evaluated by SE-HPLC and resulted in a positive correlation between spike traits and gluten strength, expressed as unextractable gluten polymer (%UPP) and large monomeric protein (%LUMP). The best performing genotypes in terms of stability were Happy, Diskett, SW1, and SW2, which should be further explored as attractive breeding material for developing climate-resistant genotypes with improved bread-making quality. RGB imaging in combination with gluten protein screening by SE-HPLC could thus be a valuable approach for identifying climate stress-tolerant wheat genotypes.

2.
Plant Dis ; 107(3): 720-729, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35900348

ABSTRACT

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici Eriks. & E. Henn, is the most devastating fungal disease of bread wheat. Here, a wheat-rye multiple disomic substitution line, SLU126 4R (4D), 5R (5D), and 6R (7D), possessing resistance against 25 races of P. striiformis f. sp. tritici, was used and crossed with Chinese Spring ph1b to induce homeologous recombination to produce introgressions with a reduced rye chromosome segment. Seedling assays confirmed that the stripe rust resistance from SLU126 was retained over multiple generations. Through genotyping-by-sequencing (GBS) platforms and aligning the putative GBS-single-nucleotide polymorphism (SNPs) to the full-length annotated rye nucleotide-binding leucine-rich repeat (NLR) genes in the parental lines (CS ph1b, SLU126, CSA, and SLU820), we identified the physical position of 26, 13, and 9 NLR genes on chromosomes 6R, 4R, and 5R, respectively. The physical positions of 25 NLR genes on chromosome 6R were identified from 568,460,437 bp to 879,958,268 bp in the 6RL chromosome segment. Based on these NLR positions on the 6RL chromosome segment, the three linked SNPs (868,123,650 to 873,285,112 bp) were validated through kompetitive allele-specific PCR (KASP) assays in SLU126 and resistance plants in the family 29-N3-5. Using these KASP markers, we identified a small piece of the rye translocation (i.e., as a possible 6DS.6DL.6RL.6DL) containing the stripe resistance gene, temporary designated YrSLU, within the 6RL segment. This new stripe rust resistance gene provides an additional asset for wheat improvement to mitigate yield losses caused by stripe rust.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Triticum/microbiology , Chromosomes, Plant/genetics , Disease Resistance/genetics , Basidiomycota/genetics , Alleles , Translocation, Genetic , Puccinia
3.
Plants (Basel) ; 11(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36235528

ABSTRACT

The effects of prolonged heat and drought stress and cool growing conditions on dough mixing quality traits of spring wheat (Triticum aestivum L.) were studied in fifty-six genotypes grown in 2017 and 2018 in southern Sweden. The mixing parameters evaluated by mixograph and the gluten protein characteristics studied by size exclusion high-performance liquid chromatography (SE-HPLC) in dough were compared between the two growing seasons which were very different in length, temperature and precipitation. The genotypes varying in gluten strength between the growing seasons (≤5%, ≤12%, and ≤17%) from three groups (stable (S), moderately stable (MS), and of varying stability (VS)) were studied. The results indicate that most of the mixing parameters were more strongly impacted by the interaction between the group, genotype, and year than by their individual contribution. The excessive prolonged heat and drought did not impact the buildup and mixing time expressed as peak time and time 1-2. The gluten polymeric proteins (unextractable, %UPP; total unextractable, TOTU) and large unextractable monomeric proteins (%LUMP) were closely associated with buildup and water absorption in dough. Major significant differences were found in the dough mixing parameters between the years within each group. In Groups S and MS, the majority of genotypes showed the smallest variation in the dough mixing parameters responsible for the gluten strength and dough development between the years. The mixing parameters such as time 1-2, buildup, and peak time (which were not affected by prolonged heat and drought stress) together with the selected gluten protein parameters (%UPP, TOTU, and %LUMP) are essential components to be used in future screening of dough mixing quality in wheat in severe growing environments.

4.
Plants (Basel) ; 10(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34579350

ABSTRACT

Controlled plant growth facilities provide the possibility to alter climate conditions affecting plant growth, such as humidity, temperature, and light, allowing a better understanding of plant responses to abiotic and biotic stresses. A bottleneck, however, is measuring various aspects of plant growth regularly and non-destructively. Although several high-throughput phenotyping facilities have been built worldwide, further development is required for smaller custom-made affordable systems for specific needs. Hence, the main objective of this study was to develop an affordable, standalone and automated phenotyping system called "Phenocave" for controlled growth facilities. The system can be equipped with consumer-grade digital cameras and multispectral cameras for imaging from the top view. The cameras are mounted on a gantry with two linear actuators enabling XY motion, thereby enabling imaging of the entire area of Phenocave. A blueprint for constructing such a system is presented and is evaluated with two case studies using wheat and sugar beet as model plants. The wheat plants were treated with different irrigation regimes or high nitrogen application at different developmental stages affecting their biomass accumulation and growth rate. A significant correlation was observed between conventional measurements and digital biomass at different time points. Post-harvest analysis of grain protein content and composition corresponded well with those of previous studies. The results from the sugar beet study revealed that seed treatment(s) before germination influences germination rates. Phenocave enables automated phenotyping of plants under controlled conditions, and the protocols and results from this study will allow others to build similar systems with dimensions suitable for their custom needs.

5.
Sci Rep ; 11(1): 9012, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907249

ABSTRACT

Modern crop production is characterized by high nitrogen (N) application rates, which can influence the co-limitation of harvested yield by other nutrients. Using a multidimensional niche volume concept and scaling exponents frequently applied in plant ecological research, we report that increased N and phosphorus (P) uptake in a growing wheat crop along with enhanced grain biomass is associated with more than proportional increase of other nutrients. Furthermore, N conversion efficiency and grain yield are strongly affected by the magnesium (Mg) to P ratio in the growing crop. We analyzed a field trial in Central Sweden including nine wheat varieties grown during two years with contrasting weather, and found evidence for Mg co-limitation at lower grain yields and P co-limitation at higher yields. We argue that critical concentrations of single nutrients, which are often applied in agronomy, should be replaced by nutrient ratios. In addition, links between plant P and Mg contents and root traits were found; high root number enhanced the P:N ratio, whilst steep root angle, indicating deep roots, increased the Mg:N ratio. The results have significant implications on the management and breeding targets of agriculturally grown wheat, which is one of the most important food crops worldwide.

6.
Plant Physiol ; 180(4): 2049-2060, 2019 08.
Article in English | MEDLINE | ID: mdl-31123094

ABSTRACT

Root growth requires substantial amounts of energy and thus carbohydrates. The energy costs of root growth are particularly high in both dry and compacted soil, due to high soil penetration resistance. Consequently, more carbon must be allocated from aboveground plant tissue to roots, which limits crop productivity. In this study, we tested the utility of root cortical cell diameter as a potential selection target to reduce the energy costs of root growth. Isothermal calorimetry was adopted for in situ quantification of the energy costs of root growth of 16 wheat (Triticum aestivum) genotypes under three levels of penetration resistance. We show that cortical cell diameter is a pivotal and heritable trait, which is strongly related to the energy costs of root growth. Genotypic diversity was found for cortical cell diameter and the energy costs of root growth. A large root cortical cell diameter correlated with reduced energy costs of root growth, particularly under high soil penetration resistance. Moreover, significant correlations were found between the ability to radially enlarge cortical cells upon greater penetration resistance (i.e. phenotypic plasticity) and the responsiveness in the energy costs of root growth. A higher degree of phenotypic plasticity in cortical cell diameter was associated with reduced energy costs of root growth as soil penetration resistance increased. We therefore suggest that genotypic diversity and phenotypic plasticity in cortical cell diameter should be harnessed to adapt crops to dry and compacted soils.


Subject(s)
Plant Roots/growth & development , Plant Roots/metabolism , Triticum/growth & development , Triticum/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Genotype , Poaceae/growth & development , Poaceae/metabolism
7.
Physiol Plant ; 164(4): 442-451, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29536550

ABSTRACT

The Baltic Sea is one of the largest brackish water bodies in the world. Eutrophication is a major concern in the Baltic Sea due to the leakage of nutrients to the sea with agriculture being the primary source. Wheat (Triticum aestivum L.) is the most widely grown crop in the countries surrounding the Baltic Sea and thus promoting sustainable agriculture practices for wheat cultivation will have a major impact on reducing pollution in the Baltic Sea. This approach requires identifying and addressing key challenges for sustainable wheat production in the region. Implementing new technologies for climate-friendly breeding and digital farming across all surrounding countries should promote sustainable intensification of agriculture in the region. In this review, we highlight major challenges for wheat cultivation in the Baltic Sea region and discuss various solutions integrating transnational collaboration for pre-breeding and technology sharing to accelerate development of low input wheat cultivars with improved host plant resistance to pathogen and enhanced adaptability to the changing climate.


Subject(s)
Plant Breeding/methods , Triticum/growth & development , Triticum/physiology , Agriculture , Baltic States , Eutrophication/physiology
8.
PLoS One ; 5(10): e13529, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20976007

ABSTRACT

BACKGROUND: A horizontal gene transfer has brought an active nuclear gene, PgiC2, from a polyploid Poa species (P. palustris or a close relative) into the common grass sheep's fescue (Festuca ovina). The donor and the receptor species are strictly reproductively separated, and PgiC2 occurs in a polymorphic state within F. ovina. The active gene copy is normally closely linked to a very similar pseudogene. METHODOLOGY/PRINCIPAL FINDINGS: By genome walking we have obtained the up- and downstream sequences of PgiC2 and of corresponding genes in the donor and recipient species. Comparisons of these sequences show that the complete upstream region necessary for the gene's expression is included in the transferred segment. About 1 kb upstream of PgiC2 a fragment with transposition associated properties has been found (TAF). It is present in P. palustris and its polyploid relatives, though not at the homologous position, and is absent from many other grasses, including non-transgenic F. ovina plants. It is possible that it is a part of a transposing element involved in getting the gene into a transferring agent and/or into the recipient chromosome. CONCLUSIONS/SIGNIFICANCE: The close similarity of the up- and downstream regions with the corresponding regions in P. palustris excludes all suggestions that PgiC2 is not a HGT but the result of a duplication within the F. ovina lineage. The small size of the genetic material transferred, the complex nature of the PgiC2 locus, and the associated fragment with transposition associated properties suggest that the horizontal transfer occurred via a vector and not via illegitimate pollination.


Subject(s)
Genes, Plant , Plants, Genetically Modified , Poaceae/genetics
9.
Genetica ; 138(3): 355-62, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20128113

ABSTRACT

A PCR based survey of Festuca ovina plants from populations around the southern part of the Baltic Sea demonstrates both geographic and molecular variation in the enzyme gene PgiC2, horizontally transferred from a Poa-species. Our results show that PgiC2-a natural functional nuclear transgene-is not a local ephemeral phenomenon but is present in a very large number of individuals. We find also that its frequency is geographically variable and that it appears in more than one molecular form. The chloroplast variation in the region does not indicate any distinct subdivision due to different colonization routes after the last glaciation. Our data illustrate the geographic and molecular variation that may occur in natural populations with a polymorphic, unfixed transgene affected by diverse kinds of mutational and evolutionary processes.


Subject(s)
Festuca/genetics , Genetic Variation , Geography , Transgenes , DNA, Chloroplast/analysis , DNA, Chloroplast/genetics , Europe , Evolution, Molecular , Festuca/enzymology , Gene Frequency , Gene Transfer, Horizontal , Genome, Plant , Glucose-6-Phosphate Isomerase/genetics , Oceans and Seas , Poa/genetics , Pseudogenes , Selection, Genetic
10.
Mol Phylogenet Evol ; 46(3): 890-6, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18226929

ABSTRACT

A segregating second locus, PgiC2, for the enzyme phosphoglucose isomerase (PGIC) is found in the grass sheep's fescue, Festuca ovina. We have earlier reported that a phylogenetic analysis indicates that PgiC2 has been horizontally transferred from the reproductively separated grass genus Poa. Here we extend our analysis to include intron and exon information on 27 PgiC sequences from 18 species representing five genera, and confirm our earlier finding. The origin of PgiC2 can be traced to a group of closely interrelated, polyploid and partially asexual Poa species. The sequence most similar to PgiC2 is found in Poa palustris with a divergence, based on synonymous substitutions, of only 0.67%. This value suggests that the transfer took place less than 600,000 years ago (late Pleistocene), at a time when most extant Poa and Festuca species already existed.


Subject(s)
Festuca/genetics , Gene Transfer, Horizontal , Glucose-6-Phosphate Isomerase/genetics , Plant Proteins/genetics , Poa/genetics , Evolution, Molecular , Festuca/classification , Festuca/enzymology , Molecular Sequence Data , Phylogeny , Poa/classification , Poa/enzymology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...