Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 12(1): 7033, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857732

ABSTRACT

Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory - reverts tumor progression and macrophage polarization. Finally, a user-friendly web-resource is provided enabling the investigation of dynamic transcriptional perturbations linked to disease progression.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Transcriptome , Animals , Atlases as Topic , Cell Line, Tumor , Disease Progression , Enhancer of Zeste Homolog 2 Protein/metabolism , G2 Phase Cell Cycle Checkpoints/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Neoplasm Proteins/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Principal Component Analysis , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction , Single-Cell Analysis
2.
Nat Commun ; 12(1): 734, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531470

ABSTRACT

Driver genes with a mutually exclusive mutation pattern across tumor genomes are thought to have overlapping roles in tumorigenesis. In contrast, we show here that mutually exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick. At the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP. ERG upregulates wild type SPOP to dampen androgen receptor (AR) signaling and sustain ERG activity through degradation of the bromodomain histone reader ZMYND11. Conversely, SPOP-mutant tumors stabilize ZMYND11 to repress ERG-function and enable oncogenic androgen receptor signaling. This dichotomy regulates the response to therapeutic interventions in the AR pathway. While mutant SPOP renders tumor cells susceptible to androgen deprivation therapies, ERG promotes sensitivity to high-dose androgen therapy and pharmacological inhibition of wild type SPOP. More generally, these results define a distinct class of antagonistic cancer drivers and a blueprint toward their therapeutic exploitation.


Subject(s)
Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Prostatic Neoplasms/metabolism , Repressor Proteins/metabolism , Transcriptional Regulator ERG/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Animals , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Immunohistochemistry , Immunoprecipitation , Male , Mice , Mice, Nude , Mutation/genetics , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Prostatic Neoplasms/genetics , Protein Binding , Proteomics , Receptors, Androgen/metabolism , Repressor Proteins/genetics , Signal Transduction/physiology , Transcriptional Regulator ERG/genetics , Ubiquitin-Protein Ligase Complexes/genetics
3.
Nat Commun ; 12(1): 1117, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602919

ABSTRACT

Therapy resistance and metastatic processes in prostate cancer (PCa) remain undefined, due to lack of experimental models that mimic different disease stages. We describe an androgen-dependent PCa patient-derived xenograft (PDX) model from treatment-naïve, soft tissue metastasis (PNPCa). RNA and whole-exome sequencing of the PDX tissue and organoids confirmed transcriptomic and genomic similarity to primary tumor. PNPCa harbors BRCA2 and CHD1 somatic mutations, shows an SPOP/FOXA1-like transcriptomic signature and microsatellite instability, which occurs in 3% of advanced PCa and has never been modeled in vivo. Comparison of the treatment-naïve PNPCa with additional metastatic PDXs (BM18, LAPC9), in a medium-throughput organoid screen of FDA-approved compounds, revealed differential drug sensitivities. Multikinase inhibitors (ponatinib, sunitinib, sorafenib) were broadly effective on all PDX- and patient-derived organoids from advanced cases with acquired resistance to standard-of-care compounds. This proof-of-principle study may provide a preclinical tool to screen drug responses to standard-of-care and newly identified, repurposed compounds.


Subject(s)
Models, Biological , Organoids/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Xenograft Model Antitumor Assays , Androgens/metabolism , Antineoplastic Agents/therapeutic use , Genome, Human , Humans , Male , Mutation/genetics , Neoplasm Metastasis , Prostatic Neoplasms/genetics , Transcriptome/genetics
4.
Cancers (Basel) ; 12(10)2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33081033

ABSTRACT

Triple-negative breast cancer (TNBC) is a heterogeneous disease that lacks effective therapeutic options. In this study, we profile eighteen TNBC cell lines for their sensitivity to the anti-proliferative action of all-trans retinoic acid (ATRA). The only three cell lines (HCC-1599, MB-157 and MDA-MB-157) endowed with ATRA-sensitivity are characterized by genetic aberrations of the NOTCH1-gene, causing constitutive activation of the NOTCH1 γ-secretase product, N1ICD. N1ICD renders HCC-1599, MB-157 and MDA-MB-157 cells sensitive not only to ATRA, but also to γ-secretase inhibitors (DAPT; PF-03084014). Combinations of ATRA and γ-secretase inhibitors produce additive/synergistic effects in vitro and in vivo. RNA-sequencing studies of HCC-1599 and MB-157 cells exposed to ATRA and DAPT and ATRA+DAPT demonstrate that the two compounds act on common gene sets, some of which belong to the NOTCH1 pathway. ATRA inhibits the growth of HCC-1599, MB-157 and MDA-MB-157 cells via RARα, which up-regulates several retinoid target-genes, including RARß. RARß is a key determinant of ATRA anti-proliferative activity, as its silencing suppresses the effects exerted by the retinoid. In conclusion, we demonstrate that ATRA exerts a significant anti-tumor action only in TNBC cells showing constitutive NOTCH1 activation. Our results support the design of clinical trials involving combinations between ATRA and γ-secretase inhibitors for the treatment of this TNBC subtype.

5.
Cancers (Basel) ; 12(5)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384653

ABSTRACT

All-trans retinoic acid (ATRA), a recognized differentiating agent, has significant potential in the personalized/stratified treatment of breast cancer. The present study reports on the molecular mechanisms underlying the anti-tumor activity of ATRA in breast cancer. The work is based on transcriptomic experiments performed on ATRA-treated breast cancer cell-lines, short-term tissue cultures of patient-derived mammary-tumors and a xenograft model. ATRA upregulates gene networks involved in interferon-responses, immune-modulation and antigen-presentation in retinoid-sensitive cells and tumors characterized by poor immunogenicity. ATRA-dependent upregulation of these gene networks is caused by a viral mimicry process, involving the activation of endogenous retroviruses. ATRA induces a non-canonical type of viral mimicry, which results in increased expression of the IRF1 (Interferon Responsive Factor 1) transcription factor and the DTX3L (Deltex-E3-Ubiquitin-Ligase-3L) downstream effector. Functional knockdown studies indicate that IRF1 and DTX3L are part of a negative feedback loop controlling ATRA-dependent growth inhibition of breast cancer cells. The study is of relevance from a clinical/therapeutic perspective. In fact, ATRA stimulates processes controlling the sensitivity to immuno-modulatory drugs, such as immune-checkpoint-inhibitors. This suggests that ATRA and immunotherapeutic agents represent rational combinations for the personalized treatment of breast cancer. Remarkably, ATRA-sensitivity seems to be relatively high in immune-cold mammary tumors, which are generally resistant to immunotherapy.

6.
Int J Biol Markers ; 35(1_suppl): 20-22, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32079462

ABSTRACT

Cancer is a complex disease characterized by a wide array of mutually interacting components constituting the tumor microenvironment (connective tissue, vascular system, immune cells), many of which are targeted therapeutically. In particular, immune checkpoint inhibitors have recently become an established part of the treatment of cancer. Despite great promise, only a portion of the patients display durable response. Current research efforts are concentrated on the determination of tumor-specific biomarkers predictive of response, such as tumor mutational burden, microsatellite instability, and neo-antigen presentation. However, it is clear that several additional characteristics pertaining to the tumor microenvironment play a critical role in the effectiveness of immunotherapy. Here we comment on the computational methods that are used for the analysis of the tumor microenvironment components from transcriptomic data, discuss the critical needs, and foresee potential evolutions in the field.


Subject(s)
Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/metabolism , Transcriptome/genetics , Humans
7.
J Exp Clin Cancer Res ; 38(1): 496, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31847869

ABSTRACT

In the original publication of this article [1], the images of Figs. 4 and 5 were exchanged and the legends of the two figures did not correspond due to a typesetting error.

8.
J Exp Clin Cancer Res ; 38(1): 436, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31665044

ABSTRACT

BACKGROUND: All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. METHODS: We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and -resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. RESULTS: ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. CONCLUSIONS: The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria.


Subject(s)
Breast Neoplasms/metabolism , Cardiolipins/metabolism , Gene Expression Profiling/methods , Mitochondria/metabolism , Tretinoin/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lipidomics/methods , Mass Spectrometry , Mitochondria/drug effects , Oxidative Phosphorylation/drug effects , Single-Cell Analysis , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL