Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 346: 123688, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38431247

ABSTRACT

One challenge of the citrus industry is the treatment and disposal of its effluents due to their high toxicity, substantial organic load, and consequent resistance to conventional biotechnological processes. This study introduces a novel approach, using electrochemical oxidation with a boron-doped diamond anode to efficiently remove organic compounds from biodegraded pulp wash (treated using the fungus Pleurotus sajor-caju.) The findings reveal that employing a current density of 20 mA cm-2 achieves notable results, including a 44.1% reduction in color, a 70.0% decrease in chemical oxygen demand, an 88.0% reduction in turbidity, and an impressive 99.7% removal of total organic carbon (TOC) after 6 h of electrolysis. The energy consumption was estimated at 2.93 kWh g-1 of removed TOC. This sequential biological-electrochemical procedure not only significantly reduced the mortality rate (85%) of Danio rerio embryos but also reduced the incidence of morphologically altered parameters. Regarding acute toxicity (LC50) of the residue, the process demonstrated a mortality reduction of 6.97% for D. rerio and a 40.88% lethality decrease for Lactuca sativa seeds. The substantial reduction in toxicity and organic load observed in this study highlights the potential applicability of combined biological and electrochemical treatments for real agroindustrial residues or their effluents.


Subject(s)
Diamond , Water Pollutants, Chemical , Diamond/chemistry , Water Pollutants, Chemical/analysis , Electrolysis/methods , Organic Chemicals , Electrodes , Oxidation-Reduction
2.
J Anal Methods Chem ; 2018: 4506754, 2018.
Article in English | MEDLINE | ID: mdl-29686929

ABSTRACT

A multiresidue method for detecting and quantifying sulfonamides (sulfapyridine, sulfamerazine, sulfathiazole, sulfamethazine, sulfadimethoxine, sulfamethoxazole, and sulfamethoxypyridazine) and trimethoprim in tilapia fillet (Oreochromis niloticus) using liquid chromatography coupled to mass spectrometry was developed and validated. The sample preparation was optimized using the QuEChERS approach. The chromatographic separation was performed using a C18 column and 0.1% formic acid in water and acetonitrile as the mobile phase in the isocratic elution mode. Method validation was performed based on the Commission Decision 2002/657/EC and Brazilian guideline. The validation parameters evaluated were linearity (r ≥ 0.99); limits of detection (LOD) and quantification (LOQ), 1 ng·g-1 and 5 ng·g-1, respectively; intraday and interdays precision (CV lower than 19.4%). The decision limit (CCα 102.6-120.0 ng·g-1 and 70 ng·g-1 for sulfonamides and trimethoprim, respectively) and detection capability (CCß 111.7-140.1 ng·g-1 and 89.9 ng·g-1 for sulfonamides and trimethoprim, respectively) were determined. Analyses of tilapia fillet samples from fish exposed to sulfamethazine through feed (incurred samples) were conducted in order to evaluate the method. This new method was demonstrated to be fast, sensitive, and suitable for monitoring sulfonamides and trimethoprim in tilapia fillet in health surveillance programs, as well as to be used in pharmacokinetics and residue depletion studies.

3.
Chemosphere ; 197: 89-95, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29334653

ABSTRACT

The residue depletion of sulfamethazine (SMZ) was evaluated in tilapia (Oreochromis niloticus) after 11 days of administration of medicated feed containing SMZ, at the dose of 422 mg/kg body weight (bw). The determination of SMZ in feed and tilapia fillet was carried out using the QuEChERS approach for sample preparation, and high performance liquid chromatography with diode array detector (HPLC-DAD) and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) for quantitation, respectively. Both methods were validated based on international and Brazilian guidelines and shown to be suitable for the intended purposes. The withdrawal period to reach the maximum residue level (MRL) of 100 µg/kg, according to the European Union (EU) legislative framework to all substances belonging to the sulfonamide (SA) group (EU, 2010), was 10 days (260 °C-day). After treatment, the maximum level of SMZ accumulation in the tilapia muscle was 1.6 mg/kg. SMZ was shown to be quickly excreted by tilapia. Thus, considering the acceptable daily intake of SMZ established by the Codex Commission (0-0.05 mg/kg bw), and a factor of 5 times the upper amount of fish consumption in Brazil (38 kg/year), this study showed that there is a low risk of adverse effects to consumers. This study offers subsidies not only for the establishment of public policies with regard to the use of veterinary drugs currently not allowed in a country by their legal legislative framework for fish farming, but also to fish producers for the proper handling to ensure safe fish fillets.


Subject(s)
Anti-Infective Agents/metabolism , Sulfamethazine/metabolism , Tilapia/metabolism , Animal Feed , Animals , Brazil , Chromatography, High Pressure Liquid/methods , Cichlids , Muscles/chemistry , Sulfamethazine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...