Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 92(11): 1874-1887, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32301533

ABSTRACT

Thermal decomposition process was used to obtain modified photocatalytic and/or photoluminescence properties of bismuth phosphate polymorphs. The precursor BiPO4 , 0.7H2 O was synthesized by a coprecipitation route. The observed polymorphs were the hexagonal P31 21 hydrate phase BiPO4 , 0.7H2 O at 25°C, a mix system of hexagonal and monoclinic P21 /n phases at 200°C and 400°C, a mix system of monoclinic phases P21 /n and P21 /m at 600°C, and a unique monoclinic phase P21 /m at 900°C. The X-ray diffraction analyses allowed evidencing lattice deformations due to structural defects. The photocatalytic activities in the presence of rhodamine B in aqueous solution were determined using UV light irradiation. The best photocatalytic efficiencies were observed with the mix systems resulting from thermal decomposition at 400 and 600°C. Photoluminescence experiments performed under UV-laser light irradiation revealed unexpected emissions in the green-orange range, with optimal intensities for the mix systems observed at 400°C. The role of structural defects resulting from decomposition process is discussed. PRACTITIONER POINTS: Thermal decomposition is used to introduce structural defects in BiPO4 polymorphs The BiPO4 intermediate systems are used to photodegrade rhodamine B Active species trapping experiments are performed Photoluminescence experiments highlight green-orange emissions Structural defects are at the origin of this photoluminescence.


Subject(s)
Light , Ultraviolet Rays , Water
2.
Photochem Photobiol Sci ; 19(2): 235-250, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31976508

ABSTRACT

This work reports the combined effect of the morphology and crystallization degree of the strontium tungstate (SrWO4) scheelite structure on its photocatalytic and photoluminescence properties. The difference in the precursor ratio leads to two morphologies, spindle and sphere, which remain unchanged with heat treatment up to 500 °C. However, the crystallite sizes of the as-obtained samples and samples treated at 300 and 500 °C are about 50-74 nm for spindles and 44-110 nm for spheres. Both morphologies and thermal treatments lead to the variation in the photoluminescence and photodegradation of rhodamine (RhB) and methylene blue (MB) dyes under UV irradiation. A stronger photodegradation efficiency was found for RhB (90%) than for MB (72%). The photoinduced mechanism is more significant for RhB and becomes more efficient for samples treated at high temperature, while the photocatalysis of MB is weak due to the adsorption process. A broad visible photoluminescence band was observed at room temperature and chromaticity coordinates were identified, which confirmed the emission wavelength. The most intense photoluminescence was obtained for samples treated at 300 °C, corresponding to the optimal disordered structures and accompanied by a redshift wavelength for both spheres and spindles. In this case, the spindles showed the most intense photoluminescence, almost ten times higher than that in spheres.

3.
Sci Rep ; 5: 17403, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26627680

ABSTRACT

The ecological success of diatoms is emphasized by regular blooms of many different species in all aquatic systems, but the reason behind their success is not fully understood. A special feature of the diatom cell is the frustule, a nano-patterned cell encasement made of amorphous biosilica. The optical properties of a cleaned single valve (one half of a frustule) from the diatom Coscinodiscus centralis were studied using confocal micro-spectroscopy. A photonic crystal function in the frustule was observed, and analysis of the hyperspectral mapping revealed an enhancement of transmitted light around 636 and 663 nm. These wavelengths match the absorption maxima of chlorophyll a and c, respectively. Additionally, we demonstrate that a highly efficient light trapping mechanism occurred, resulting from strong asymmetry between the cribrum and foramen pseudo-periodic structures. This effect may prevent transmitted light from being backscattered and in turn enhance the light absorption. Based on our results, we hypothesize that the multi-scaled layered structure of the frustule improves photosynthetic efficiency by these three mechanisms. The optical properties of the frustule described here may contribute to the ecological success of diatoms in both lentic and marine ecosystems, and should be studies further in vivo.


Subject(s)
Diatoms , Ecosystem , Light , Nanostructures , Photosynthesis/physiology , Silicon Dioxide , Diatoms/chemistry , Diatoms/metabolism , Diatoms/ultrastructure , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism
4.
Sci Rep ; 5: 14198, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26381332

ABSTRACT

In the Drosophila wing anterior margin, the dendrites of gustatory neurons occupy the interior of thin and long bristles that present tiny pores at their extremities. Many attempts to measure ligand-evoked currents in insect wing gustatory neurons have been unsuccessful for technical reasons. The functions of this gustatory activity therefore remain elusive and controversial. To advance our knowledge on this understudied tissue, we investigated the architecture of the wing chemosensory bristles and wing trachea using Raman spectroscopy and fluorescence microscopy. We hypothesized that the wing gustatory hair, an open-ended capillary tube, and the wing trachea constitute biological systems similar to nano-porous materials. We present evidence that argues in favour of the existence of a layer or a bubble of air beneath the pore inside the gustatory hair. We demonstrate that these hollow hairs and wing tracheal tubes fulfil conditions for which the physics of fluids applied to open-ended capillaries and porous materials are relevant. We also document that the wing gustatory hair and tracheal architectures are capable of trapping volatile molecules from the environment, which might increase the efficiency of their spatial detection by way of wing vibrations or during flight.


Subject(s)
Chemoreceptor Cells/ultrastructure , Drosophila/physiology , Drosophila/ultrastructure , Taste Perception , Wings, Animal/ultrastructure , Animals , Mechanoreceptors/ultrastructure
5.
Langmuir ; 30(40): 12049-56, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25226598

ABSTRACT

Nanocrystals of 20 mol % Gd(3+)-doped CeO2 dispersible in basic aqueous solutions were grown via hydrothermal treatment of anionic Ce(IV) and Gd(III) carbonate complexes at 125-150 °C for 6-24 h with N(CH3)4(+) as a capping agent. The nanocrystals were characterized in detail using dynamic light scattering (DLS), ζ-potential measurements, X-ray diffraction (XRD), specific surface area measurements based on the Brunauer-Emmett-Teller theory (SSA(BET)), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, and Raman spectroscopy. DLS analysis revealed that the highly transparent product solution consisted of nanocrystals approximately 10-20 nm of hydrodynamic diameter with a very narrow size distribution, while the ζ-potential analysis results strongly suggested that the N(CH3)4(+) capped negatively charged sites on the nanocrystals' surface and provided sufficient repulsive steric effect to prevent agglomeration. Moreover, the crystallite size (d(XRD)) estimated from the XRD patterns and the equivalent particle size (d(BET)) estimated from the SSA(BET) data were in the range between 5-6 and 4-4.5 nm, respectively, and nearly constant independent of reaction time, indicating suppressed Ostwald ripening due to capping. Good agreement between the values obtained from the d(XRD) and d(BET) analyses with the size of the primary nanocrystals observed in the TEM image also confirmed that the primary nanocrystals were single crystals and nearly free from aggregation. Furthermore, the gadolinium content in the as-prepared nanocrystals was determined to be very close to 20 mol % and remained unchanged after HCl treatment, indicating successful doping of stoichiometric amount of Gd(3+) into CeO2 lattices. Finally, the Raman analysis suggested that only a slightly Gd(3+)-rich phase was present in the nanocrystals grown for shorter reaction times. By increasing the reaction time, even at 125 °C, the Gd(3+) was homogeneously distributed into the CeO2 lattices via solid state diffusion.

6.
Sci Rep ; 4: 5238, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24912409

ABSTRACT

We compare the Raman scattering properties of hybrid nanostructures consisting of Ag nanoparticles (NPs) in disordered and aligned arrangements on single-walled carbon nanotubes (SWCNTs) as a result of chemical and photoreduction methods. In the latter case, the unique structure of the very small Ag NP (from 4 to 7 nm) chains generated an extremely large mode at 969 cm(-1) that was assigned to the sulphate-silver interaction at the NP surface. Another strong mode was present at 1201 cm(-1) and was assigned to an IR-active mode of sodium dodecyl sulphate (SDS); this mode was observed because the symmetry changes altered the selection rules. We demonstrate that both the UV photoreduction of silver and the presence of SWCNTs are necessary to produce this very strong Raman scattering. The Raman modes of the SWCNTs are also significantly modified by the presence of Ag NP chains along the nanotubes.

7.
Sci Rep ; 4: 4700, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24763088

ABSTRACT

The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

8.
Sci Rep ; 2: 579, 2012.
Article in English | MEDLINE | ID: mdl-22900140

ABSTRACT

A singular adaptive phenotype of a parthenogenetic insect species (Acyrthosiphon pisum) was selected in cold conditions and is characterized by a remarkable apparition of a greenish colour. The aphid pigments involve carotenoid genes well defined in chloroplasts and cyanobacteria and amazingly present in the aphid genome, likely by lateral transfer during evolution. The abundant carotenoid synthesis in aphids suggests strongly that a major and unknown physiological role is related to these compounds beyond their canonical anti-oxidant properties. We report here that the capture of light energy in living aphids results in the photo induced electron transfer from excited chromophores to acceptor molecules. The redox potentials of molecules involved in this process would be compatible with the reduction of the NAD+ coenzyme. This appears as an archaic photosynthetic system consisting of photo-emitted electrons that are in fine funnelled into the mitochondrial reducing power in order to synthesize ATP molecules.


Subject(s)
Adenosine Triphosphate/biosynthesis , Aphids/metabolism , Carotenoids/biosynthesis , Electron Transport , Light , Animals , Aphids/genetics , Eye/metabolism , Genes, Insect , Mitochondria/metabolism , NAD/metabolism , Phenotype , Photosynthesis , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL