Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 15274, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37714939

ABSTRACT

Neutron dark-field imaging is a powerful technique for investigating the microstructural properties of materials through high-resolution full-field mapping of small-angle scattering. However, conventional neutron dark-field imaging utilizing Talbot-Lau interferometers is limited to probing only one scattering direction at a time. Here, we introduce a novel multi-directional neutron dark-field imaging approach that utilizes a single absorption grating with a two-dimensional pattern to simultaneously probe multiple scattering directions. The method is demonstrated to successfully resolve fiber orientations in a carbon compound material as well as the complex morphology of the transformed martensitic phase in additively manufactured stainless steel dogbone samples after mechanical deformation. The latter results reveal a preferential alignment of transformed domains parallel to the load direction, which is verified by EBSD. The measured real-space correlation functions are in good agreement with those extracted from the EBSD map. Our results demonstrate that multi-directional neutron dark-field imaging is overcoming significant limitations of conventional neutron dark-field imaging in assessing complex heterogeneous anisotropic microstructures and providing quantitative structural information on multiple length scales.

2.
Sci Rep ; 11(1): 8023, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33850193

ABSTRACT

In the past decade neutron dark-field contrast imaging has developed from a qualitative tool depicting microstructural inhomogeneities in bulk samples on a macroscopic scale of tens to hundreds of micrometers to a quantitative spatial resolved small-angle scattering instrument. While the direct macroscopic image resolution around tens of micrometers remains untouched microscopic structures have become assessable quantitatively from the nanometer to the micrometer range. Although it was found that magnetic structures provide remarkable contrast we could only recently introduce polarized neutron grating interferometric imaging. Here we present a polarized and polarization analyzed dark-field contrast method for spatially resolved small-angle scattering studies of magnetic microstructures. It is demonstrated how a polarization analyzer added to a polarized neutron grating interferometer does not disturb the interferometric measurements but allows to separate and measure spin-flip and non-spin-flip small-angle scattering and thus also the potential for a distinction of nuclear and different magnetic contributions in the analyzed small-angle scattering.

3.
Phys Rev Lett ; 126(7): 070401, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33666459

ABSTRACT

We have recently shown how a polarized beam in Talbot-Lau interferometric imaging can be used to analyze strong magnetic fields through the spin dependent differential phase effect at field gradients. While in that case an adiabatic spin coupling with the sample field is required, here we investigate a nonadiabatic coupling causing a spatial splitting of the neutron spin states with respect to the external magnetic field. This subsequently leads to no phase contrast signal but a loss of interferometer visibility referred to as dark-field contrast. We demonstrate how the implementation of spin analysis to the Talbot-Lau interferometer setup enables one to recover the differential phase induced to a single spin state. Thus, we show that the dark-field contrast is a measure of the quantum mechanical spin split analogous to the Stern-Gerlach experiment without, however, spatial beam separation. In addition, the spin analyzed dark-field contrast imaging introduced here bears the potential to probe polarization dependent small-angle scattering and thus magnetic microstructures.

4.
Sci Rep ; 9(1): 18973, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31831866

ABSTRACT

We introduce the application of a symmetric Talbot-Lau neutron grating interferometer which provides a significantly extended autocorrelation length range essential for quantitative dark-field contrast imaging. The highly efficient set-up overcomes the limitation of the conventional Talbot-Lau technique to a severely limited micrometer range as well as the limitation of the other advanced dark-field imaging techniques in the nanometer regime. The novel set-up enables efficient and continuous dark-field contrast imaging providing quantitative small-angle neutron scattering information for structures in a regime from some tens of nanometers to several tens of micrometers. The quantitative analysis enabled in and by such an extended range is demonstrated through application to reference sample systems of the diluted polystyrene particle in aqueous solutions. Here we additionally demonstrate and successfully discuss the correction for incoherent scattering. This correction results to be necessary to achieve meaningful quantitative structural results. Furthermore, we present the measurements, data modelling and analysis of the two distinct kinds of cohesive powders enabled by the novel approach, revealing the significant structural differences of their fractal nature.

5.
Nat Commun ; 10(1): 3788, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31439848

ABSTRACT

The intrinsic magnetic moment of a neutron, combined with its charge neutrality, is a unique property which allows the investigation of magnetic phenomena in matter. Here we present how the utilization of a cold polarized neutron beam in neutron grating interferometry enables the visualization and characterization of magnetic properties on a microscopic scale in macroscopic samples. The measured signal originates from the phase shift induced by the magnetic potential. Our method enables the detection of previously inaccessible magnetic field gradients, in the order of T cm-1, extending the probed range by an order of magnitude. We visualize and quantify the phase shift induced by a well-defined square shaped uniaxial magnetic field and validate our experimental findings with theoretical calculations based on Hall probe measurements of the magnetic field distribution. This allows us to further extend our studies to investigations of inhomogeneous and anisotropic magnetic field distribution.

6.
Opt Express ; 25(2): 1019-1029, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28157983

ABSTRACT

The performance of X-ray and neutron grating interferometers is characterised by their visibility, which is a measure for the maximum achievable contrast. In this study we show how the real grating geometry in a grating interferometer with three gratings impacts the interference and self projection that leads to visibility in the first place. We quantify the individual contributions of wavelength distributions and grating shapes in terms of visibility reduction by determining the absolute as well as relative effect of each contribution. The understanding of the impact of changed geometry and wavelength distributions on the interference of neutrons/X-rays allows us to present the first fully quantitative model of a grating interferometer setup. We demonstrate the capability of the simulation framework by building a model of the neutron grating interferometer at the ICON beamline and directly comparing simulated and measured visibility values. The general nature of the model makes it possible to extend it to any given grating interferometer for both X-rays and neutrons.

SELECTION OF CITATIONS
SEARCH DETAIL
...