Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
HGG Adv ; 5(2): 100261, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38160254

ABSTRACT

The largest multi-gene family in metazoans is the family of olfactory receptor (OR) genes. Human ORs are organized in clusters over most chromosomes and seem to include >0.1% the human genome. Because 369 out of 856 OR genes are mapped on chromosome 11 (HSA11), we sought to determine whether they mediate structural rearrangements involving this chromosome. To this aim, we analyzed 220 specimens collected during diagnostic procedures involving structural rearrangements of chromosome 11. A total of 222 chromosomal abnormalities were included, consisting of inversions, deletions, translocations, duplications, and one insertion, detected by conventional chromosome analysis and/or fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (array-CGH). We verified by bioinformatics and statistical approaches the occurrence of breakpoints in cytobands with or without OR genes. We found that OR genes are not involved in chromosome 11 reciprocal translocations, suggesting that different DNA motifs and mechanisms based on homology or non-homology recombination can cause chromosome 11 structural alterations. We also considered the proximity between the chromosomal territories of chromosome 11 and its partner chromosomes involved in the translocations by using the deposited Hi-C data concerning the possible occurrence of chromosome interactions. Interestingly, most of the breakpoints are located in regions highly involved in chromosome interactions. Further studies should be carried out to confirm the potential role of chromosome territories' proximity in promoting genome structural variation, so fundamental in our understanding of the molecular basis of medical genetics and evolutionary genetics.


Subject(s)
Chromosomes, Human, Pair 11 , Receptors, Odorant , Humans , Comparative Genomic Hybridization , In Situ Hybridization, Fluorescence , Chromosome Aberrations , Translocation, Genetic/genetics , Receptors, Odorant/genetics
2.
Int J Mol Sci ; 23(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35328767

ABSTRACT

Improvements in microarray-based comparative genomic hybridization technology have allowed for high-resolution detection of genome wide copy number alterations, leading to a better definition of rearrangements and supporting the study of pathogenesis mechanisms. In this study, we focused our attention on chromosome 8p. We report 12 cases of 8p rearrangements, analyzed by molecular karyotype, evidencing a continuum of fragility that involves the entire short arm. The breakpoints seem more concentrated in three intervals: one at the telomeric end, the others at 8p23.1, close to the beta-defensin gene cluster and olfactory receptor low-copy repeats. Hypothetical mechanisms for all cases are described. Our data extend the cohort of published patients with 8p aberrations and highlight the need to pay special attention to these sequences due to the risk of formation of new chromosomal aberrations with pathological effects.


Subject(s)
Chromosome Aberrations , Genome , Comparative Genomic Hybridization , Gene Rearrangement , Humans , In Situ Hybridization, Fluorescence
3.
Mol Genet Genomic Med ; 8(1): e1056, 2020 01.
Article in English | MEDLINE | ID: mdl-31851782

ABSTRACT

BACKGROUND: Chromosomal microarray analysis (CMA) is nowadays widely used in the diagnostic path of patients with clinical phenotypes. However, there is no ascertained evidence to date on how to assemble single/combined clinical categories of developmental phenotypic findings to improve the array-based detection rate. METHODS: The Italian Society of Human Genetics coordinated a retrospective study which included CMA results of 5,110 Italian patients referred to 17 genetics laboratories for variable combined clinical phenotypes. RESULTS: Non-polymorphic copy number variants (CNVs) were identified in 1512 patients (30%) and 615 (32%) present in 552 patients (11%) were classified as pathogenic. CNVs were analysed according to type, size, inheritance pattern, distribution among chromosomes, and association to known syndromes. In addition, the evaluation of the detection rate of clinical subgroups of patients allowed to associate dysmorphisms and/or congenital malformations combined with any other single clinical sign to an increased detection rate, whereas non-syndromic neurodevelopmental signs and non-syndromic congenital malformations to a decreased detection rate. CONCLUSIONS: Our retrospective study resulted in confirming the high detection rate of CMA and indicated new clinical markers useful to optimize their inclusion in the diagnostic and rehabilitative path of patients with developmental phenotypes.


Subject(s)
Chromosome Aberrations , Developmental Disabilities/genetics , Genetic Testing/standards , Oligonucleotide Array Sequence Analysis/standards , Practice Guidelines as Topic , DNA Copy Number Variations , Developmental Disabilities/classification , Developmental Disabilities/diagnosis , Genetic Testing/methods , Genetics, Medical/organization & administration , Humans , Italy , Oligonucleotide Array Sequence Analysis/methods , Phenotype , Sensitivity and Specificity , Societies, Medical/standards
4.
Eur J Med Genet ; 53(5): 325-8, 2010.
Article in English | MEDLINE | ID: mdl-20621612

ABSTRACT

We describe a 6-year-old boy with a de novo 12 Mb interstitial duplication of chromosome 17q11.1q12, identified by oligo array-CGH. The patient shows psychomotor developmental and language delay, dolicocephaly, minor facial anomalies, hypotonia and renal megacalicosis. The duplication involves the neurofibromatosis type I (NF1) gene and overlaps with long-range unusual deletions of the NF1 region, extending over 17q12 region and associated with renal cysts and diabetes (RCDA). To our knowledge this is the first case of a patient carrying a large-sized duplication involving the 17q11.2q12 region. In the duplicated chromosomal segment there are about 130 annotated genes. Among them, several genes which have been already proposed as candidate for mental retardation (MR) in patients with partially overlapping deletions may be responsible for neurological impairment in our patient. In addition, other genes within the duplicated region are of interest for possible correlation with a few clinical features of the patient.


Subject(s)
Chromosome Duplication , Chromosomes, Human, Pair 17/genetics , Language Development Disorders/genetics , Psychomotor Disorders/genetics , Child , Comparative Genomic Hybridization , Humans , Intellectual Disability/genetics , Male , Muscle Hypotonia/genetics , Neurofibromatosis 1/metabolism
5.
Eur J Med Genet ; 52(4): 218-23, 2009.
Article in English | MEDLINE | ID: mdl-19236961

ABSTRACT

We describe a patient with an abnormal phenotype and a de novo CCR consisting of a reciprocal translocation between chromosomes 1 and 15 and an insertion of an interstitial segment from chromosome 2 within chromosome 1. The CCR was studied by QFQ banding and FISH. The apparently balanced rearrangement was further investigated with array-CGH, that uncovered three cryptic deletions on chromosome 2q. By means of BAC-FISH two deletions were located at the breakpoints of the insertion, at 2q14.3 and 2q31.2, and one at 2q22.2, in the region of 2q translocated on derivative 1. Consequently, in silico analysis of the deleted regions was performed. Among deleted genes, particularly interesting seems to be CNTNAP5, encoding a member of the neurexin superfamily. The three mouse orthologues are highly expressed in adult brain tissues. We speculate that loss of CNTNAP5 might contribute to the developmental language delay of this patient, similar to CNTNAP2, another member of the same protein family, whose alterations have been recently associated with delay in the age at first word in autistic patients. At clinical patient's evaluation, a Mowat-Wilson syndrome (MWS) like appearance was noted. The disease is caused by mutation or deletion of ZEB2 gene, located in our patient 794Kb distally to the 2q22.2 deletion, in the chromosome 2 segment inserted into the derivative 1. The loss of the gene has been excluded by the array-CGH results, but its proximity to the deleted segment and/or its insertion in a different genetic context might influence and consequently impair its expression. Our study confirms that array-CGH is a precious method to identify cryptic imbalances in CCR carriers and underlie the essential role of BAC-FISH as second step of analysis to assess the reciprocal position of the chromosomal segments involved in CCRs and the exact mapping of the imbalances.


Subject(s)
Chromosome Aberrations , Comparative Genomic Hybridization , Cytogenetic Analysis , In Situ Hybridization, Fluorescence , Intellectual Disability/genetics , Language Disorders/genetics , Adult , Base Sequence , Chromosome Breakage , Chromosome Painting , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 15 , Chromosomes, Human, Pair 2 , DNA/genetics , DNA/isolation & purification , Humans , Male , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Sequence Deletion , Translocation, Genetic
7.
Genet Med ; 7(9): 620-5, 2005.
Article in English | MEDLINE | ID: mdl-16301863

ABSTRACT

PURPOSE: We evaluated the experiences of 19 Italian laboratories concerning 241 small supernumerary marker chromosomes (sSMCs) with the aim of answering questions arising from their origin from any chromosome, their variable size and genetic content, and their impact on the carrier's phenotype. METHODS: Conventional protocols were used to set up the cultures and chromosome preparations. Both commercial and homemade probes were used for the fluorescent in situ hybridization analyses. RESULTS: A total of 113 of the 241 sSMCs were detected antenatally, and 128 were detected postnatally. There were 52 inherited and 172 de novo cases. Abnormal phenotype was present in 137 cases (57%), 38 of which were antenatally diagnosed. A mosaic condition was observed in 87 cases (36%). In terms of morphology, monocentric and dicentric bisatellited marker chromosomes were the most common, followed by monocentric rings and short-arm isochromosomes. The chromosomes generating the sSMCs were acrocentric in 132 cases (69%) and non-acrocentric chromosomes in 60 cases (31%); a neocentromere was hypothesized in three cases involving chromosomes 6, 8, and 15. CONCLUSION: The presented and published data still do not allow any definite conclusions to be drawn concerning karyotype-phenotype correlations. Only concerted efforts to characterize molecularly the sSMCs associated or not with a clinical phenotype can yield results suitable for addressing karyotype-phenotype correlations in support of genetic counseling.


Subject(s)
Chromosome Aberrations , Genetic Testing/methods , In Situ Hybridization, Fluorescence , Phenotype , Humans , Inheritance Patterns/genetics , Italy
SELECTION OF CITATIONS
SEARCH DETAIL
...