Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Discov ; 10(1): 201, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684672

ABSTRACT

Acute myeloid leukemia (AML) is a fatal malignancy of the blood and bone marrow. Leukemic stem cells (LSCs) are a rare subset of leukemic cells that promote the development and progression of AML, and eradication of LSCs is critical for effective control of this disease. Emetine is an FDA-approved antiparasitic drug with antitumor properties; however, little is known about its potential against LSCs. Herein, we explored the antileukemic potential of emetine, focusing on its effects on AML stem/progenitor cells. Emetine exhibited potent cytotoxic activity both in hematologic and solid cancer cells and induced AML cell differentiation. Emetine also inhibited AML stem/progenitor cells, as evidenced by decreased expression of CD34, CD97, CD99, and CD123 in KG-1a cells, indicating anti-AML stem/progenitor cell activities. The administration of emetine at a dosage of 10 mg/kg for two weeks showed no significant toxicity and significantly reduced xenograft leukemic growth in vivo. NF-κB activation was reduced in emetine-treated KG-1a cells, as shown by reduced phospho-NF-κB p65 (S529) and nuclear NF-κB p65. DNA fragmentation, YO-PRO-1 staining, mitochondrial depolarization and increased levels of active caspase-3 and cleaved PARP (Asp214) were detected in emetine-treated KG-1a cells. Moreover, treatment with the pancaspase inhibitor Z-VAD(OMe)-FMK partially prevented the apoptotic cell death induced by emetine. Emetine treatment also increased cellular and mitochondrial reactive oxygen species, and emetine-induced apoptosis in KG-1a cells was partially prevented by the antioxidant N-acetylcysteine, indicating that emetine induces apoptosis, at least in part, by inducing oxidative stress. Overall, these studies indicate that emetine is a novel potential anti-AML agent with promising activity against stem/progenitor cells, encouraging the development of further studies aimed at its clinical application.

2.
Cell Death Discov ; 10(1): 147, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503729

ABSTRACT

Acute myeloid leukaemia (AML) is a haematological malignancy characterised by the accumulation of transformed myeloid progenitors in the bone marrow. Piplartine (PL), also known as piperlongumine, is a pro-oxidant small molecule extracted from peppers that has demonstrated antineoplastic potential in solid tumours and other haematological malignancies. In this work, we explored the potential of PL to treat AML through the use of a combination of cellular and molecular analyses of primary and cultured leukaemia cells in vitro and in vivo. We showed that PL exhibits in vitro cytotoxicity against AML cells, including CD34+ leukaemia-propagating cells, but not healthy haematopoietic progenitors, suggesting anti-leukaemia selectivity. Mechanistically, PL treatment increased reactive oxygen species (ROS) levels and induced ROS-mediated apoptosis in AML cells, which could be prevented by treatment with the antioxidant scavenger N-acetyl-cysteine and the pancaspase inhibitor Z-VAD(OMe)-FMK. PL treatment reduced NFKB1 gene transcription and the level of NF-κB p65 (pS536), which was depleted from the nucleus of AML cells, indicating suppression of NF-κB p65 signalling. Significantly, PL suppressed AML development in a mouse xenograft model, and its combination with current AML treatments (cytarabine, daunorubicin and azacytidine) had synergistic effects, indicating translational therapeutic potential. Taken together, these data position PL as a novel anti-AML candidate drug that can target leukaemia stem/progenitors and is amenable to combinatorial therapeutic strategies.

3.
Biomed Pharmacother ; 142: 112034, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411914

ABSTRACT

Acute myeloid leukemia (AML) is the most lethal form of leukemia. Standard anti-AML treatment remains almost unchanged for decades. Tingenone (TG) and 22-hydroxytingenone (22-HTG) are quinonemethide triterpenes found in the Amazonian plant Salacia impressifolia (Celastraceae), with cytotoxic properties in different histological types of cancer cells. In the present work, we investigated the anti-AML action mechanism of TG and 22-HTG in the AML HL-60 cell line. Both compounds exhibited potent cytotoxicity in a panel of cancer cell lines. Mechanistic studies found that TG and 22-HTG reduced cell growth and caused the externalization of phosphatidylserine, the fragmentation of internucleosomal DNA and the loss of mitochondrial transmembrane potential in HL-60 cells. In addition, pre-incubation with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, prevented TG- and 22-HTG-induced apoptosis, indicating cell death by apoptosis via a caspase-dependent pathway. The analysis of the RNA transcripts of several genes indicated the interruption of the cellular antioxidant system, including the downregulation of thioredoxin, as a target for TG and 22-HTG. The application of N-acetyl-cysteine, an antioxidant, completely prevented apoptosis induced by TG and 22-HTG, indicating activation of the apoptosis pathway mediated by oxidative stress. Moreover, TG and 22-HTG induced DNA double-strand break and phosphorylation of JNK2 (T183/Y185) and p38α (T180/Y182), and co-incubation with SP 600125 (JNK/SAPK inhibitor) and PD 169316 (p38 MAPK inhibitor) partially prevented apoptosis induced by TG and 22-HTG. Together, these data indicate that TG and 22-HTG are new candidate for anti-AML therapy targeting thioredoxin.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Thioredoxins/genetics , Triterpenes/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/metabolism , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , DNA Breaks, Double-Stranded/drug effects , Down-Regulation/drug effects , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System/drug effects , Mice , Oxidative Stress/drug effects , Salacia/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Appl Immunohistochem Mol Morphol ; 29(5): 345-351, 2021.
Article in English | MEDLINE | ID: mdl-33512817

ABSTRACT

Proteoglycans are involved in tumor development and may regulate the Hedgehog (HH) pathway. This study aimed to investigate the gene and protein expression of glypican-1 (GPC1), -3 (GPC3), and -5 (GPC5) in oral squamous cell carcinoma (OSCC) and tumor-free lateral margins (TM) and their association with the HH pathway. Quantitative PCR was performed for GPC1, GPC3, GPC5, SHH, PTCH1, SMO, and GLI1 genes in samples of OSCC (n=31), TM (n=12), and non-neoplastic oral mucosa (NNM) of healthy patients (n=6), alongside an immunohistochemical evaluation of GPC1, GPC3, and GPC5 proteins and HH proteins SHH and glioma-associated oncogene homolog 1 (GLI1). Double staining for GPC3/SHH, GPC5/SHH, GPC3/tubulin [ac Lys40], GPC5/Tubulin [ac Lys40], and GPC5/GLI1 was also performed. Overexpression of GPC1 and GPC5 in tumor samples and underexpressed levels of GPC3 gene transcripts were observed when compared with TM (standard sample). HH pathway mRNA aberrant expression in OSCC samples and a negative correlation between GPC1 and GPC5 at transcription levels were detected. GPC1 staining was rare in OSCC, but positive cells were found in NNM and TM. Otherwise positive immunostaining for GPC3 and GPC5 was observed in OSCCs, but not in NNM and TM. Blood vessels adjacent to tumor islands were positive for GPC1 and GPC5. Co-localization of GPC3-positive and GPC5-positive cells with SHH and Tubulin [ac Lys40] proteins was noted, as well as of GPC5 and GLI1. The absence of the GPC1 protein in neoplastic cells, underexpression of the GPC3 gene, and co-localization of GPCs and HH proteins may indicate the maintenance of aberrant HH pathway activation in OSCC.


Subject(s)
Gene Expression Regulation, Neoplastic , Glypicans , Head and Neck Neoplasms , Hedgehog Proteins , Neoplasm Proteins , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Adult , Female , Glypicans/biosynthesis , Glypicans/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Male , Middle Aged , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
5.
Appl Immunohistochem Mol Morphol ; 29(5): 335-344, 2021.
Article in English | MEDLINE | ID: mdl-32769440

ABSTRACT

In oral squamous cell carcinoma (OSCC), involvement and activation of the Hedgehog pathway (HH) may be related to epithelial-mesenchymal transition and cell proliferation. The present study aimed to evaluate epithelial-mesenchymal transition and proliferative potential in OSCC cases demonstrating activation of the HH pathway. Twenty-three GLi-1-positive OSCC cases were submitted to immunohistochemical detection of Snail, Slug, N-cadherin, E-cadherin, ß-catenin, and MCM3 proteins. Clinical-pathologic immunoexpression data were obtained from the invasion front and tumor islets, and then compared. At the invasion front, OSCC cases presented positive Snail, Slug, and MCM3 expression in the nuclei of tumor cells. Loss of membrane and cytoplasmic expression of E-cadherin and ß-catenin was also observed. Positive N-cadherin expression was observed in 31.78% of the cases. GLi-1 immunoexpression was associated with loss of membrane E-cadherin (P<0.001), membrane ß-catenin (P<0.001), and cytoplasmic ß-catenin (P=0.02) expression. In the tumor islets, we observed nuclear expression of GLi-1, Snail, Slug, and MCM3. E-cadherin and ß-catenin showed positivity in tumor cell membranes. Statistically significant positive correlations between GLi-1 and Snail (P=0.05), E-cadherin (P=0.01), and cytoplasmic ß-catenin (P=0.04) were found. GLi-1 was associated with clinical staging, while membrane ß-catenin expression was related to the presence of metastasis in lymph nodes and to clinical staging. The HH pathway may be involved in regulating the expression of the mesenchymal phenotype. The loss of membrane E-cadherin and ß-catenin expression was observed at the tumor front region, whereas cell adhesion protein expression was detected in tumor islets regardless of MCM3.


Subject(s)
Biomarkers, Tumor/biosynthesis , Cell Proliferation , Epithelial-Mesenchymal Transition , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Zinc Finger Protein GLI1/biosynthesis , Female , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Male , Middle Aged , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...