Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(18): eadj6979, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701204

ABSTRACT

Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.


Subject(s)
Butterflies , Sex Determination Processes , Animals , Butterflies/genetics , Female , Male , Sex Determination Processes/genetics , Alleles , Insect Proteins/genetics , Insect Proteins/metabolism , Homozygote
2.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559088

ABSTRACT

To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. Knowledge of the mechanisms of resistance remains limited in Anopheles arabiensis, which in many parts of Africa is of increasing importance because it is apparently less susceptible to many indoor control interventions. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to deltamethrin (commonly used in bednets) and PM, in An. arabiensis from two regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in resistance to these two insecticides. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the Coeae2g-Coeae6g cluster of carboxylesterase genes. Using complementary data from An. coluzzii in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster. Against this background of metabolic resistance, target site resistance was very rare or absent for both insecticides. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with three An. arabiensis individuals from West Africa revealed a startling diversity of evolutionary origins of target site resistance, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.

3.
Nat Commun ; 14(1): 4946, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587104

ABSTRACT

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods.


Subject(s)
Anopheles , Insecticides , Pyrethrins , Animals , Anopheles/genetics , Insecticides/pharmacology , Genome-Wide Association Study , Organophosphates/pharmacology , Pyrethrins/pharmacology
4.
Insect Biochem Mol Biol ; 160: 103991, 2023 09.
Article in English | MEDLINE | ID: mdl-37536576

ABSTRACT

The molecular mechanisms of sex determination in moths and butterflies (Lepidoptera) with female heterogamety (WZ/ZZ) are poorly understood, except in the silkworm Bombyx mori. However, the Masculinizer (Masc) gene that controls male development and dosage compensation in B. mori, appears to be conserved in Lepidoptera, as its masculinizing function was recently confirmed in several moth species. In this work, we investigated the role of the Masc gene in sex determination of the codling moth Cydia pomonella (Tortricidae), a globally important pest of pome fruits and walnuts. The gene structure of the C. pomonella Masc ortholog, CpMasc, is similar to B. mori Masc. However, unlike B. mori, we identified 14 splice variants of CpMasc in the available transcriptomes. Subsequent screening for sex specificity and genetic variation using publicly available data and RT-PCR revealed three male-specific splice variants. Then qPCR analysis of these variants revealed sex-biased expression showing a peak only in early male embryos. Knockdown of CpMasc by RNAi during early embryogenesis resulted in a shift from male-to female-specific splicing of the C. pomonella doublesex (Cpdsx) gene, its downstream effector, in ZZ embryos, leading to a strongly female-biased sex ratio. These data clearly demonstrate that CpMasc functions as a masculinizing gene in the sex-determining cascade of C. pomonella. Our study also showed that CpMasc transcripts are provided maternally, as they were detected in unfertilized eggs after oviposition and in mature eggs dissected from virgin females. This finding is unique, as maternal provision of mRNA has rarely been studied in Lepidoptera.


Subject(s)
Bombyx , Butterflies , Moths , Male , Female , Animals , Moths/genetics , Moths/metabolism , Butterflies/genetics , Bombyx/genetics , Dosage Compensation, Genetic , RNA, Messenger/genetics
5.
bioRxiv ; 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36712022

ABSTRACT

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.

6.
G3 (Bethesda) ; 12(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-35980174

ABSTRACT

The assembly of divergent haplotypes using noisy long-read data presents a challenge to the reconstruction of haploid genome assemblies, due to overlapping distributions of technical sequencing error, intralocus genetic variation, and interlocus similarity within these data. Here, we present a comparative analysis of assembly algorithms representing overlap-layout-consensus, repeat graph, and de Bruijn graph methods. We examine how postprocessing strategies attempting to reduce redundant heterozygosity interact with the choice of initial assembly algorithm and ultimately produce a series of chromosome-level assemblies for an agricultural pest, the diamondback moth, Plutella xylostella (L.). We compare evaluation methods and show that BUSCO analyses may overestimate haplotig removal processing in long-read draft genomes, in comparison to a k-mer method. We discuss the trade-offs inherent in assembly algorithm and curation choices and suggest that "best practice" is research question dependent. We demonstrate a link between allelic divergence and allele-derived contig redundancy in final genome assemblies and document the patterns of coding and noncoding diversity between redundant sequences. We also document a link between an excess of nonsynonymous polymorphism and haplotigs that are unresolved by assembly or postassembly algorithms. Finally, we discuss how this phenomenon may have relevance for the usage of noisy long-read genome assemblies in comparative genomics.


Subject(s)
Moths , Alleles , Animals , Genomics/methods , Haplotypes , Moths/genetics , Sequence Analysis, DNA
7.
PLoS Genet ; 17(1): e1009253, 2021 01.
Article in English | MEDLINE | ID: mdl-33476334

ABSTRACT

Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d'Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.


Subject(s)
Acetylcholinesterase/genetics , Insecticide Resistance/genetics , Malaria/genetics , Malaria/transmission , Africa, Western , Animals , Anopheles/drug effects , Anopheles/genetics , Anopheles/parasitology , DNA Copy Number Variations/genetics , Genes, Duplicate/genetics , Genetic Introgression/genetics , Humans , Insecticides/adverse effects , Malaria/parasitology , Malaria/prevention & control , Mosquito Vectors/genetics , Organothiophosphorus Compounds/adverse effects , Organothiophosphorus Compounds/pharmacology
8.
Heredity (Edinb) ; 125(1-2): 28-39, 2020 08.
Article in English | MEDLINE | ID: mdl-32404940

ABSTRACT

Sex chromosomes are predicted to harbour elevated levels of sexually antagonistic variation due to asymmetries in the heritability of recessive traits in the homogametic versus heterogametic sex. This evolutionary dynamic may manifest as high recessive load specifically affecting the homogametic sex, and the retention of haplotype diversity in small populations. We tested the hypothesis that the Z chromosome in the butterfly Bicyclus anynana carries a high inbred load for male fertility and viability. Homozygosity of Z chromosome blocks was produced by daughter-father backcrosses, and inferred from marker loci positioned via a linkage map. Male sterility was, in general, unrelated to homozygosity in any region of the Z, but there was an extreme deficit of homozygous males within a 2 cM interval in all families. In contrast, no corresponding skew in Z genotype was detected in their (hemizygous) sisters. The same pattern was observed in historically inbred lines, indicating a high frequency of recessive lethals in the ancestral population. Allele-frequency changes between 1993 and 2006 (70 generations at Ne ~ 160) show that, despite the loss of many haplotypes, diversity was retained significantly above the neutral expectation. Effective overdominance in the lethal region can account for this effect locally but not in other parts of the chromosome, that are also associated with persistent linkage disequilibrium. These unexpected patterns suggest the operation of other factors, such as epistatic selection, recombination suppression, assortative mating and meiotic drive. Our results highlight the role of balancing selection in maintaining the inbred load and linked genetic diversity.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Chromosome Mapping , Genetic Variation , Haplotypes , Inbreeding , Infertility, Male , Linkage Disequilibrium , Male , Sex Chromosomes
9.
Biol Lett ; 15(10): 20190582, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31615373

ABSTRACT

The rise of dark (melanic) forms of many species of moth in heavily coal-polluted areas of nineteenth- and twentieth-century Britain, and their post-1970s fall, point to a common selective pressure (camouflage against bird predators) acting at the community level. The extent to which this convergent phenotypic response relied on similar genetic and developmental mechanisms is unknown. We examine this problem by testing the hypothesis that the locus controlling melanism in Phigalia pilosaria and Odontopera bidentata, two species of geometrid moth that showed strong associations between melanism and coal pollution, is the same as that controlling melanism in Biston betularia, previously identified as the gene cortex. Comparative linkage mapping using family material supports the hypothesis for both species, indicating a deeply conserved developmental mechanism for melanism involving cortex. However, in contrast to the strong selective sweep signature seen in British B. betularia, no significant association was detected between cortex-region markers and melanic morphs in wild-caught samples of P. pilosaria and O. bidentata, implying much older, or diverse, origins of melanic morph alleles in these latter species.


Subject(s)
Melanosis , Moths , Alleles , Animals , Chromosome Mapping , Pigmentation
10.
Sci Rep ; 9(1): 13335, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527637

ABSTRACT

The spread of resistance to insecticides in disease-carrying mosquitoes poses a threat to the effectiveness of control programmes, which rely largely on insecticide-based interventions. Monitoring mosquito populations is essential, but obtaining phenotypic measurements of resistance is laborious and error-prone. High-throughput genotyping offers the prospect of quick and repeatable estimates of resistance, while also allowing resistance markers to be tracked and studied. To demonstrate the potential of highly-mulitplexed genotypic screening for measuring resistance-association of mutations and tracking their spread, we developed a panel of 28 known or putative resistance markers in the major malaria vector Anopheles gambiae, which we used to screen mosquitoes from a wide swathe of Sub-Saharan Africa (Burkina Faso, Ghana, Democratic Republic of Congo (DRC) and Kenya). We found resistance association in four markers, including a novel mutation in the detoxification gene Gste2 (Gste2-119V). We also identified a duplication in Gste2 combining a resistance-associated mutation with its wild-type counterpart, potentially alleviating the costs of resistance. Finally, we describe the distribution of the multiple origins of kdr resistance, finding unprecedented diversity in the DRC. This panel represents the first step towards a quantitative genotypic model of insecticide resistance that can be used to predict resistance status in An. gambiae.


Subject(s)
Anopheles/drug effects , Anopheles/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Africa South of the Sahara , Animals , Anopheles/parasitology , Genetic Markers/genetics , Genotyping Techniques , Glutathione Transferase/genetics , High-Throughput Nucleotide Sequencing , Insect Proteins/genetics , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Polymerase Chain Reaction
11.
Commun Biol ; 2: 286, 2019.
Article in English | MEDLINE | ID: mdl-31396566

ABSTRACT

Light sensing by tissues distinct from the eye occurs in diverse animal groups, enabling circadian control and phototactic behaviour. Extraocular photoreceptors may also facilitate rapid colour change in cephalopods and lizards, but little is known about the sensory system that mediates slow colour change in arthropods. We previously reported that slow colour change in twig-mimicking caterpillars of the peppered moth (Biston betularia) is a response to achromatic and chromatic visual cues. Here we show that the perception of these cues, and the resulting phenotypic responses, does not require ocular vision. Caterpillars with completely obscured ocelli remained capable of enhancing their crypsis by changing colour and choosing to rest on colour-matching twigs. A suite of visual genes, expressed across the larval integument, likely plays a key role in the mechanism. To our knowledge, this is the first evidence that extraocular colour sensing can mediate pigment-based colour change and behaviour in an arthropod.


Subject(s)
Behavior, Animal , Color Perception , Color Vision , Moths/physiology , Photoreceptor Cells, Invertebrate/physiology , Skin Pigmentation , Adaptation, Physiological , Animals , Color Perception/genetics , Color Vision/genetics , Cues , Ecosystem , Gene Expression Regulation , Larva/physiology , Moths/embryology , Moths/genetics , Predatory Behavior , Signal Transduction , Skin Pigmentation/genetics , Time Factors
12.
Malar J ; 17(1): 412, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30400885

ABSTRACT

BACKGROUND: Mutations in the voltage-gated sodium channel at codon 1014 confer knock-down resistance (kdr) to pyrethroids in a wide range of insects. Anopheles gambiae exhibits two mutant alleles at codon 1014, serine and phenylalanine; and both are now widespread across Africa. Existing screening methods only allow for one resistant allele to be detected per assay. A new locked nucleic acid (LNA) qPCR assay was developed for the simultaneous detection of both mutant alleles and the wild type allele in a single assay. This tri-allelic detection assay was assessed as part of a study of the insecticide resistance in An. gambiae sensu stricto (s.s.) in the previously un-sampled area of Nord Ubangi, Democratic Republic of the Congo. METHODS: Samples from three sites were tested for insecticide susceptibility using WHO bioassays, with and without the synergist PBO preceding pyrethroid exposures, and were subsequently analysed for frequency and resistance-association of the Vgsc-1014 and Vgsc-N1575Y mutations. Results from the LNA-kdr 1014 assay were compared to results from standard TaqMan-kdr assays. RESULTS: Anopheles gambiae sensu lato (s.l.) was by far the predominant vector captured (84%), with only low frequencies of Anopheles funestus s.l. (9%) detected in Nord Ubangi. Molecular identification found An. gambiae s.s. to be the principal vector (99%) although Anopheles coluzzii was detected at very low frequency. Anopheles gambiae were susceptible to the carbamate insecticide bendiocarb, but resistant to DDT and to the pyrethroids permethrin and deltamethrin. Susceptibility to both pyrethroids was partially restored with prior exposure to PBO suggesting likely involvement of metabolic resistance. Anopheles gambiae s.s. was homozygous for kdr resistant alleles with both the L1014F and L1014S mutations present, and the N1575Y polymorphism was present at low frequency. The LNA-kdr assay simultaneously detected both resistant alleles and gave results entirely consistent with those from the two TaqMan-kdr assays. CONCLUSION: This study provides rare data on insecticide resistance and mechanisms in Anopheles from the centre of Africa, with the first detection of N1575Y. Nord Ubangi populations of An. gambiae s.s. show insecticide resistance mediated by both metabolic mechanisms and Vgsc mutations. The LNA-kdr assay is particularly suitable for use in populations in which both 1014S and 1014F kdr alleles co-occur and provides robust results, with higher throughput and at a quarter of the cost of TaqMan assays.


Subject(s)
Anopheles/drug effects , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/drug effects , Mutation Rate , Polymerase Chain Reaction/methods , Animals , Anopheles/genetics , Democratic Republic of the Congo , Female , Mosquito Vectors/genetics
13.
Parasit Vectors ; 11(1): 549, 2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30342535

ABSTRACT

BACKGROUND: Aedes aegypti is the principal vector of several important arboviruses. Among the methods of vector control to limit transmission of disease are genetic strategies that involve the release of sterile or genetically modified non-biting males, which has generated interest in manipulating mosquito sex ratios. Sex determination in Ae. aegypti is controlled by a non-recombining Y chromosome-like region called the M locus, yet characterisation of this locus has been thwarted by the repetitive nature of the genome. In 2015, an M locus gene named Nix was identified that displays the qualities of a sex determination switch. RESULTS: With the use of a whole-genome bacterial artificial chromosome (BAC) library, we amplified and sequenced a ~200 kb region containing the male-determining gene Nix. In this study, we show that Nix is comprised of two exons separated by a 99 kb intron primarily composed of repetitive DNA, especially transposable elements. CONCLUSIONS: Nix, an unusually large and highly repetitive gene, exhibits features in common with Y chromosome genes in other organisms. We speculate that the lack of recombination at the M locus has allowed the expansion of repeats in a manner characteristic of a sex-limited chromosome, in accordance with proposed models of sex chromosome evolution in insects.


Subject(s)
Aedes/genetics , Genome, Insect/genetics , Aedes/physiology , Animals , Base Sequence , Chromosomes, Artificial, Bacterial , Female , Gene Library , Genes, Insect , Genetic Loci , Male , Sex Chromosomes , Sex Determination Processes
14.
Gigascience ; 6(7): 1-7, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28486658

ABSTRACT

The mycalesine butterfly Bicyclus anynana, the "Squinting bush brown," is a model organism in the study of lepidopteran ecology, development, and evolution. Here, we present a draft genome sequence for B. anynana to serve as a genomics resource for current and future studies of this important model species. Seven libraries with insert sizes ranging from 350 bp to 20 kb were constructed using DNA from an inbred female and sequenced using both Illumina and PacBio technology; 128 Gb of raw Illumina data was filtered to 124 Gb and assembled to a final size of 475 Mb (∼×260 assembly coverage). Contigs were scaffolded using mate-pair, transcriptome, and PacBio data into 10 800 sequences with an N50 of 638 kb (longest scaffold 5 Mb). The genome is comprised of 26% repetitive elements and encodes a total of 22 642 predicted protein-coding genes. Recovery of a BUSCO set of core metazoan genes was almost complete (98%). Overall, these metrics compare well with other recently published lepidopteran genomes. We report a high-quality draft genome sequence for Bicyclus anynana. The genome assembly and annotated gene models are available at LepBase (http://ensembl.lepbase.org/index.html).


Subject(s)
Butterflies/genetics , Genome, Insect , Animals , Molecular Sequence Annotation , Whole Genome Sequencing
15.
Nature ; 534(7605): 102-5, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27251284

ABSTRACT

Discovering the mutational events that fuel adaptation to environmental change remains an important challenge for evolutionary biology. The classroom example of a visible evolutionary response is industrial melanism in the peppered moth (Biston betularia): the replacement, during the Industrial Revolution, of the common pale typica form by a previously unknown black (carbonaria) form, driven by the interaction between bird predation and coal pollution. The carbonaria locus has been coarsely localized to a 200-kilobase region, but the specific identity and nature of the sequence difference controlling the carbonaria-typica polymorphism, and the gene it influences, are unknown. Here we show that the mutation event giving rise to industrial melanism in Britain was the insertion of a large, tandemly repeated, transposable element into the first intron of the gene cortex. Statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred around 1819, consistent with the historical record. We have begun to dissect the mode of action of the carbonaria transposable element by showing that it increases the abundance of a cortex transcript, the protein product of which plays an important role in cell-cycle regulation, during early wing disc development. Our findings fill a substantial knowledge gap in the iconic example of microevolutionary change, adding a further layer of insight into the mechanism of adaptation in response to natural selection. The discovery that the mutation itself is a transposable element will stimulate further debate about the importance of 'jumping genes' as a source of major phenotypic novelty.


Subject(s)
DNA Transposable Elements/genetics , Moths/genetics , Moths/physiology , Mutation/genetics , Pigmentation/genetics , Wings, Animal/physiology , Adaptation, Physiological/genetics , Alleles , Animals , Biological Evolution , Cell Cycle/genetics , Color , Genes, Insect/genetics , Haplotypes/genetics , Introns/genetics , Male , Melanosis/genetics , Melanosis/veterinary , Moths/cytology , Mutagenesis, Insertional/genetics , Phenotype , Pigmentation/physiology , Selection, Genetic/genetics , United Kingdom , Wings, Animal/growth & development
16.
Science ; 332(6032): 958-60, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21493823

ABSTRACT

The rapid spread of a novel black form (known as carbonaria) of the peppered moth Biston betularia in 19th-century Britain is a textbook example of how an altered environment may produce morphological adaptation through genetic change. However, the underlying genetic basis of the difference between the wild-type (light-colored) and carbonaria forms has remained unknown. We have genetically mapped the carbonaria morph to a 200-kilobase region orthologous to a segment of silkworm chromosome 17 and show that there is only one core sequence variant associated with the carbonaria morph, carrying a signature of recent strong selection. The carbonaria region coincides with major wing-patterning loci in other lepidopteran systems, suggesting the existence of basal color-patterning regulators in this region.


Subject(s)
Adaptation, Physiological/genetics , Chromosomes, Insect/genetics , Melanins/analysis , Melanins/genetics , Moths/genetics , Pigmentation/genetics , Selection, Genetic , Alleles , Animals , Chromosome Mapping , Genes, Insect , Genetic Loci , Genotype , Haplotypes , Linkage Disequilibrium , Moths/physiology , Mutation , Polymorphism, Single Nucleotide , United Kingdom
17.
PLoS One ; 5(5): e10889, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20526362

ABSTRACT

Industrial melanism in the peppered moth (Biston betularia) is an iconic case study of ecological genetics but the molecular identity of the gene determining the difference between the typical and melanic (carbonaria) morphs is entirely unknown. We applied the candidate gene approach to look for associations between genetic polymorphisms within sixteen a priori melanisation gene candidates and the carbonaria morph. The genes were isolated and sequence characterised in B. betularia using degenerate PCR and from whole-transcriptome sequence. The list of candidates contains all the genes previously implicated in melanisation pattern differences in other insects, including aaNAT, DOPA-decarboxylase, ebony, tan, tyrosine hydroxylase, yellow and yellow2 (yellow-fa). Co-segregation of candidate gene alleles and carbonaria morph was tested in 73 offspring of a carbonaria male-typical female backcross. Surprisingly, none of the sixteen candidate genes was in close linkage with the locus controlling the carbonaria-typical polymorphism. Our study demonstrates that the 'carbonaria gene' is not a structural variant of a canonical melanisation pathway gene, neither is it a cis-regulatory element of these enzyme-coding genes. The implication is either that we have failed to characterize an unknown enzyme-coding gene in the melanisation pathway, or more likely, that the 'carbonaria gene' is a higher level trans-acting factor which regulates the spatial expression of one or more of the melanisation candidates in this study to alter the pattern of melanin production.


Subject(s)
Genetic Variation , Industry , Melanosis/genetics , Moths/genetics , Animals , Phenotype , Pigmentation/genetics
18.
Mol Ecol Resour ; 9(6): 1487-92, 2009 Nov.
Article in English | MEDLINE | ID: mdl-21564941

ABSTRACT

Deriving useful microsatellite markers in lepidopterans has been challenging when relying on scans of genomic DNA libraries, presumably due to repetitiveness in their genomes. We assayed 96 of 320 microsatellites identified in silico from a collection of Bicyclus anynana ESTs, in 11 independent individuals from a laboratory population. From the 68 successful assays, we identified 40 polymorphic markers including 22 with BLAST-based annotation. Nine of 12 selected polymorphic markers tested in a panel of 24 wild-caught individuals converted to successful assays and were all polymorphic. We discuss how microsatellite discovery in ESTs is an efficient strategy with important attendant advantages.

19.
PLoS One ; 3(12): e3882, 2008.
Article in English | MEDLINE | ID: mdl-19060955

ABSTRACT

BACKGROUND: The chromosome characteristics of the butterfly Bicyclus anynana, have received little attention, despite the scientific importance of this species. This study presents the characterization of chromosomes in this species by means of cytogenetic analysis and linkage mapping. METHODOLOGY/PRINCIPAL FINDINGS: Physical genomic features in the butterfly B. anynana were examined by karyotype analysis and construction of a linkage map. Lepidoptera possess a female heterogametic W-Z sex chromosome system. The WZ-bivalent in pachytene oocytes of B. anynana consists of an abnormally small, heterochromatic W-chromosome with the Z-chromosome wrapped around it. Accordingly, the W-body in interphase nuclei is much smaller than usual in Lepidoptera. This suggests an intermediate stage in the process of secondary loss of the W-chromosome to a ZZ/Z sex determination system. Two nucleoli are present in the pachytene stage associated with an autosome and the WZ-bivalent respectively. Chromosome counts confirmed a haploid number of n = 28. Linkage mapping had to take account of absence of crossing-over in females, and of our use of a full-sib crossing design. We developed a new method to determine and exclude the non-recombinant uninformative female inherited component in offspring. The linkage map was constructed using a novel approach that uses exclusively JOINMAP-software for Lepidoptera linkage mapping. This approach simplifies the mapping procedure, avoids over-estimation of mapping distance and increases the reliability of relative marker positions. A total of 347 AFLP markers, 9 microsatellites and one single-copy nuclear gene covered all 28 chromosomes, with a mapping distance of 1354 cM. Conserved synteny of Tpi on the Z-chromosome in Lepidoptera was confirmed for B. anynana. The results are discussed in relation to other mapping studies in Lepidoptera. CONCLUSIONS/SIGNIFICANCE: This study adds to the knowledge of chromosome structure and evolution of an intensively studied organism. On a broader scale it provides an insight in Lepidoptera sex chromosome evolution and it proposes a simpler and more reliable method of linkage mapping than used for Lepidoptera to date.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Butterflies/genetics , Chromosome Mapping , Chromosomes/genetics , Animals , Butterflies/cytology , Female , Genetic Markers , Interphase , Karyotyping , Male , Meiosis , Nucleolus Organizer Region/genetics , Sex Chromosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...