Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Hepatology ; 79(2): 269-288, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37535809

ABSTRACT

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which pharmacological treatment options are currently unavailable. PSC is strongly associated with colitis and a disruption of the gut-liver axis, and macrophages are involved in the pathogenesis of PSC. However, how gut-liver interactions and specific macrophage populations contribute to PSC is incompletely understood. APPROACH AND RESULTS: We investigated the impact of cholestasis and colitis on the hepatic and colonic microenvironment, and performed an in-depth characterization of hepatic macrophage dynamics and function in models of concomitant cholangitis and colitis. Cholestasis-induced fibrosis was characterized by depletion of resident KCs, and enrichment of monocytes and monocyte-derived macrophages (MoMFs) in the liver. These MoMFs highly express triggering-receptor-expressed-on-myeloid-cells-2 ( Trem2 ) and osteopontin ( Spp1 ), markers assigned to hepatic bile duct-associated macrophages, and were enriched around the portal triad, which was confirmed in human PSC. Colitis induced monocyte/macrophage infiltration in the gut and liver, and enhanced cholestasis-induced MoMF- Trem2 and Spp1 upregulation, yet did not exacerbate liver fibrosis. Bone marrow chimeras showed that knockout of Spp1 in infiltrated MoMFs exacerbates inflammation in vivo and in vitro , while monoclonal antibody-mediated neutralization of SPP1 conferred protection in experimental PSC. In human PSC patients, serum osteopontin levels are elevated compared to control, and significantly increased in advanced stage PSC and might serve as a prognostic biomarker for liver transplant-free survival. CONCLUSIONS: Our data shed light on gut-liver axis perturbations and macrophage dynamics and function in PSC and highlight SPP1/OPN as a prognostic marker and future therapeutic target in PSC.


Subject(s)
Cholangitis, Sclerosing , Cholestasis , Colitis , Humans , Cholangitis, Sclerosing/pathology , Osteopontin , Liver Cirrhosis/pathology , Bile Ducts/pathology , Cholestasis/pathology , Macrophages/pathology
2.
J Leukoc Biol ; 111(1): 123-133, 2022 01.
Article in English | MEDLINE | ID: mdl-33724533

ABSTRACT

Acetaminophen (APAP) intoxication is the foremost cause of drug-induced liver failure in developed countries. The only pharmacologic treatment option, N-acetylcysteine (NAC), is not effective for patients who are admitted too late and/or who have excessive liver damage, emphasizing the need for alternative treatment options. APAP intoxication results in hepatocyte death and release of danger signals, which further contribute to liver injury, in part by hepatic monocyte/macrophage infiltration and activation. Metallothionein (MT) 1 and 2 have important danger signaling functions and might represent novel therapeutic targets in APAP overdose. Therefore, we evaluated hepatic MT expression and the effect of anti-MT antibodies on the transcriptional profile of the hepatic macrophage population and liver injury following APAP overdose in mice. Hepatic MT expression was significantly induced in APAP-intoxicated mice and abundantly present in human livers. APAP intoxication in mice resulted in increased serum transaminase levels, extended necrotic regions on liver histology and induced expression of proinflammatory markers, which was significantly less pronounced in mice treated with anti-MT antibodies. Anti-MT antibody therapy attenuated proinflammatory macrophage polarization, as demonstrated by RNA sequencing analyses of isolated liver macrophages and in LPS-stimulated bone marrow-derived macrophages. Importantly, NAC and anti-MT antibodies were equally effective whereas administration of anti-MT antibody in combination with NAC exceeded the efficiency of both monotherapies in APAP-induced liver injury (AILI). We conclude that the neutralization of secreted MTs using a monoclonal antibody is a novel therapeutic strategy as mono- or add-on therapy for AILI. In addition, we provide evidence suggesting that MTs in the extracellular environment are involved in macrophage polarization.


Subject(s)
Acetaminophen/adverse effects , Analgesics, Non-Narcotic/adverse effects , Chemical and Drug Induced Liver Injury/pathology , Macrophages/pathology , Metallothionein/analysis , Animals , Antibodies, Monoclonal/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Humans , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL
3.
BMC Res Notes ; 13(1): 225, 2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32306999

ABSTRACT

OBJECTIVE: The occurrence of non-alcoholic fatty liver disease (NAFLD) is globally increasing. To challenge the current incidence of NAFLD, non-invasive markers that could identify patients at risk or monitor disease progression are an important need. Copper intake and organ copper concentrations have earlier been linked to NAFLD progression, but serum copper does not adequately represent the disease state. Cu atoms occur under the form of two stable isotopes, 63Cu and 65Cu, and the ratio of both (expressed as δ65Cu, in  ‰) in blood serum has been shown to be altered in chronic liver disease. To assess whether the Cu isotope ratio might predict disease occurrence and progression of NAFLD, the serum Cu isotopic composition of patients with different stages of NAFLD was determined. RESULTS: Our results showed that serum δ65Cu values were lower in NAFLD patients, already at the level of simple steatosis, and remained stable during further disease progression. ROC analysis shows an almost perfect diagnostic ability of serum δ65Cu values for NAFLD, but no discrimination between different severity degrees could be made. Therefore, the serum Cu isotopic composition might show potential for early diagnosis of NAFLD patients.


Subject(s)
Copper/blood , Isotopes/analysis , Isotopes/blood , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnosis , Adult , Cohort Studies , Disease Progression , Fatty Liver/blood , Female , Humans , Male , Mass Spectrometry , Middle Aged , Non-alcoholic Fatty Liver Disease/physiopathology , ROC Curve
4.
Metabolism ; 107: 154220, 2020 06.
Article in English | MEDLINE | ID: mdl-32243868

ABSTRACT

BACKGROUND AND AIMS: Obesity, diabetes and associated non-alcoholic steatohepatitis (NASH) are rising risk factors for hepatocellular carcinoma (HCC). Macrophages are important immune cells involved in inflammation and tumour development. Macrophage inositol-requiring enzyme 1 alpha (IRE1α), an ER-stress protein, has been shown to be involved in macrophage cytokine production, and myeloid-specific IRE1α knock-out (myeloid IRE1α-KO) mice showed reduced weight gain during high-fat diet feeding. However, the effect of myeloid IRE1α on NASH and subsequent HCC development has not been examined. Here, we characterized the transcriptional profile of the hepatic macrophage population in a diabetes-NASH-HCC mouse model, and investigated the effect of myeloid-specific IRE1α deletion on the phenotype of hepatic macrophage subsets and experimental NASH-HCC development. METHODS: Mice with non-functional myeloid IRE1α were created by crossing Ire1a floxed mice with Lysm-Cre mice. Two-day old myeloid IRE1α-KO and wild type (WT) mice were subcutaneously injected with streptozotocin (STZ), and male mice were fed a high-fat, -sucrose, -cholesterol diet (Western diet, WD) from the age of 4 weeks until 21 weeks. Control myeloid IRE1α-KO and WT mice received a PBS injection and were fed a matched control diet. These mice were evaluated for obesity, diabetes, NASH and HCC. The hepatic macrophage population was evaluated by flow cytometry and RNA sequencing on FACS-isolated macrophage subsets. RESULTS: STZ-injection and WD feeding resulted in an impaired glucose tolerance, advanced NASH with fibrosis, and HCC development. Myeloid IRE1α-KO STZ mice showed lower fasting glucose levels at the start of WD feeding, and an improved glucose tolerance and attenuated HCC development after 17 weeks of WD feeding despite a similar degree of liver steatosis and inflammation compared to WT mice. Transcriptomic analysis of WT liver Kupffer cells, macrophages and monocytes revealed phenotypical changes in those cell subsets during NASH-HCC development. Isolated liver Kupffer cells and macrophages from mice with a myeloid IRE1α deletion showed downregulated pathways involved in immune system activation and metabolic pathways (only in Kupffer cells), whereas pathways involved in cell division and metabolism were upregulated in monocytes. These transcriptional differences were attenuated during NASH-HCC development. CONCLUSION: Our results show that myeloid-specific IRE1α deletion results in an altered transcriptional profile of hepatic macrophages and dampens diabetes-induced NASH-HCC development, possibly by attenuated diabetes induction.


Subject(s)
Diabetes Mellitus, Experimental/complications , Endoribonucleases/genetics , Liver Neoplasms, Experimental/etiology , Liver Neoplasms, Experimental/prevention & control , Liver Neoplasms/etiology , Liver Neoplasms/prevention & control , Non-alcoholic Fatty Liver Disease/complications , Protein Serine-Threonine Kinases/genetics , Animals , Blood Glucose/metabolism , Diet, Western , Glucose Intolerance/prevention & control , Kupffer Cells/pathology , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms, Experimental/genetics , Macrophages/pathology , Mice , Mice, Knockout , Mice, Transgenic , Transcriptional Activation
5.
J Leukoc Biol ; 107(2): 341-355, 2020 02.
Article in English | MEDLINE | ID: mdl-31841237

ABSTRACT

Hepatocyte death during acetaminophen (APAP) intoxication elicits a reactive inflammatory response, with hepatic recruitment of neutrophils and monocytes, which further aggravates liver injury. Neutrophil elastase (NE), secreted by activated neutrophils, carries degradative and cytotoxic functions and maintains a proinflammatory state. We investigated NE as a therapeutic target in acetaminophen-induced liver injury (AILI). C57BL/6 mice were administered a toxic dose of APAP, 2 h prior to receiving the NE inhibitor sivelestat, N-acetylcysteine (NAC), or a combination therapy, and were euthanized after 24 and 48 h. Upon APAP overdose, neutrophils and monocytes infiltrate the injured liver, accompanied by increased levels of NE. Combination therapy of NAC and sivelestat significantly limits liver damage, as evidenced by lower serum transaminase levels and less hepatic necrosis compared to mice that received APAP only, and this to a greater extent than NAC monotherapy. Lower hepatic expression of proinflammatory markers was observed in the combination treatment group, and flow cytometry revealed significantly less monocyte influx in livers from mice treated with the combination therapy, compared to untreated mice and mice treated with NAC only. The potential of NE to induce leukocyte migration was confirmed in vitro. Importantly, sivelestat did not impair hepatic repair. In conclusion, combination of NE inhibition with sivelestat and NAC dampens the inflammatory response and reduces liver damage following APAP overdose. This strategy exceeds the standard of care and might represent a novel therapeutic option for AILI.


Subject(s)
Acetaminophen/toxicity , Acetylcysteine/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Glycine/analogs & derivatives , Inflammation/prevention & control , Sulfonamides/pharmacology , Analgesics, Non-Narcotic/toxicity , Animals , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Drug Therapy, Combination , Free Radical Scavengers/pharmacology , Glycine/pharmacology , Inflammation/etiology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Serine Proteinase Inhibitors/pharmacology
6.
Metallomics ; 11(6): 1093-1103, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31021334

ABSTRACT

Patients with chronic liver disease from different aetiologies show a light serum Cu isotopic composition compared to the reference population, with the enrichment in the 63Cu isotope correlating with the severity of the disease. However, the mechanisms underlying Cu isotope fractionation at the onset and during progression of the disease are still unclear. In this work, a common bile duct ligation (CBDL) murine model was used to investigate the effect of cholestasis-induced liver disease on the Cu isotopic composition. Wild type male and female mice underwent surgical ligation of the common bile duct and were sacrificed 2, 4 and 6 weeks, and 4, 6 and 8 weeks after the surgical intervention, respectively. The age- and gender-matched control mice underwent sham surgery. Disease progression was evaluated using serum bilirubin levels, hepatic pro-inflammatory chemokine levels and Metavir fibrosis score. CBDL-operated mice show an overall body enrichment in the light isotope 63Cu. The Cu isotopic composition of organs, bone and serum becomes gradually lighter compared to the sham-operated mice with increasing severity of the disease. The light Cu isotopic composition of the CBDL-operated mice might result from an altered Cu intake and/or excretion. As the intestinal uptake of dietary Cu is largely mediated by transporters of Cu(i), mRNA and protein expression levels of two major metal transporters (CTR1 and DMT1) and Cu reductases (STEAP proteins and duodenal cytochrome B) were examined in the duodenal tissues as potential factors inducing Cu isotope fractionation. However, no significant differences in protein expression levels were observed between the CBDL- and sham-operated mice.


Subject(s)
Cholestasis/metabolism , Copper/metabolism , Animals , Cholestasis/pathology , Disease Models, Animal , Disease Progression , Female , Isotopes/metabolism , Liver/metabolism , Male , Mice
7.
Methods Mol Biol ; 1981: 237-247, 2019.
Article in English | MEDLINE | ID: mdl-31016658

ABSTRACT

Cholestatic liver disease covers a range of biliary disorders marked by an impaired bile duct flow. Various conditions can result in bile obstruction including choledocholithiasis, surgical trauma, and autoimmune disorders. Cholestatic liver disease can be mild but generally progresses to more severe conditions with increased hepatobiliary injury, cholangitis, and ultimately liver fibrosis and cirrhosis. An extensively used experimental model to investigate the pathophysiology of biliary cirrhosis and potential novel therapies is the common bile duct ligation in mice and rats. Common bile duct ligation induces the different stages of cholestatic-induced liver disease being cholestasis, subsequently accompanied by inflammation and finally liver fibrosis and cirrhosis. In this protocol, an outline of the surgical procedures to conduct common bile duct ligation in mice is provided. The major steps include the isolation of the common bile duct, followed by ligation and dissection.


Subject(s)
Liver Cirrhosis, Biliary/metabolism , Animals , Cholestasis/metabolism , Cholestasis/pathology , Common Bile Duct/metabolism , Common Bile Duct/pathology , Disease Models, Animal , Hypertension, Portal/metabolism , Hypertension, Portal/pathology , Ligation , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Biliary/pathology , Mice , Rats
8.
Hepatology ; 69(3): 1087-1104, 2019 03.
Article in English | MEDLINE | ID: mdl-30259536

ABSTRACT

Angiogenesis contributes to the development of nonalcoholic steatohepatitis (NASH) and promotes inflammation, fibrosis, and progression to hepatocellular carcinoma (HCC). Angiopoietin-2 (Ang-2) is a key regulator of angiogenesis. We aimed to investigate the role of Ang-2 and its potential as a therapeutic target in NASH using human samples, in vivo mouse models, and in vitro assays. Serum Ang-2 levels were determined in 104 obese patients undergoing bariatric surgery and concomitant liver biopsy. The effect of the Ang-2/Tie2 receptor inhibiting peptibody L1-10 was evaluated in the methionine-choline deficient (MCD) and streptozotocin-western diet nonalcoholic fatty liver disease mouse models, and in vitro on endothelial cells and bone marrow-derived macrophages. The hepatic vasculature was visualized with µCT scans and scanning electron microscopy of vascular casts. Serum Ang-2 levels were increased in patients with histological NASH compared with patients with simple steatosis and correlated with hepatic CD34 immunoreactivity as a marker of hepatic angiogenesis. Serum and hepatic Ang-2 levels were similarly increased in mice with steatohepatitis. Both preventive and therapeutic L1-10 treatment reduced hepatocyte ballooning and fibrosis in MCD diet-fed mice and was associated with reduced hepatic angiogenesis and normalization of the vascular micro-architecture. Liver-isolated endothelial cells and monocytes from MCD-fed L1-10-treated mice showed reduced expression of leukocyte adhesion and inflammatory markers, respectively, compared with cells from untreated MCD diet-fed mice. In the streptozotocin-western diet model, therapeutic Ang-2 inhibition was able to reverse NASH and attenuate HCC progression. In vitro, L1-10 treatment mitigated increased cytokine production in lipopolysaccharide-stimulated endothelial cells but not in macrophages. Conclusion: Our findings provide evidence for Ang-2 inhibition as a therapeutic strategy to target pathological angiogenesis in NASH.


Subject(s)
Angiopoietin-2/physiology , Liver/blood supply , Neovascularization, Pathologic , Non-alcoholic Fatty Liver Disease/etiology , Adult , Angiopoietin-2/antagonists & inhibitors , Angiopoietin-2/blood , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Neovascularization, Pathologic/drug therapy , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/drug therapy , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...