Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Glob Chang Biol ; 25(3): 1106-1118, 2019 03.
Article in English | MEDLINE | ID: mdl-30623528

ABSTRACT

Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995-2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007-2015) or the annual timing of peak migration (1995-2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade-1 ). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger-bodied shorter-distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.


Subject(s)
Animal Migration , Birds/physiology , Animals , Gulf of Mexico , Seasons , Temperature , Weather
2.
Ecol Lett ; 21(7): 1055-1064, 2018 07.
Article in English | MEDLINE | ID: mdl-29736919

ABSTRACT

The migratory patterns of birds have been the focus of ecologists for millennia. What behavioural traits underlie these remarkably consistent movements? Addressing this question is central to advancing our understanding of migratory flight strategies and requires the integration of information across levels of biological organisation, e.g. species to communities. Here, we combine species-specific observations from the eBird citizen-science database with observations aggregated from weather surveillance radars during spring migration in central North America. Our results confirm a core prediction of migration theory at an unprecedented national scale: body mass predicts variation in flight strategies across latitudes, with larger-bodied species flying faster and compensating more for wind drift. We also find evidence that migrants travelling northward earlier in the spring increasingly compensate for wind drift at higher latitudes. This integration of information across biological scales provides new insight into patterns and determinants of broad-scale flight strategies of migratory birds.


Subject(s)
Animal Migration , Birds , Flight, Animal , Wind , Animals , Central America , North America , United States
SELECTION OF CITATIONS
SEARCH DETAIL