Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Lancet Microbe ; : 100866, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39053480

ABSTRACT

BACKGROUND: Although dromedary camels (Camelus dromedarius) are known to be the host reservoir for MERS-CoV, the virus causing Middle East respiratory syndrome (MERS), zoonotic transmission pathways and camel subpopulations posing highest transmission risk are poorly understood. Extensively managed herds, ubiquitous across the Arabian Peninsula, present a major potential source of primary infection. In this study we aimed to address key knowledge gaps regarding MERS epidemiology among high-risk communities associated with such herds, which is essential information for effective control strategies. METHODS: We did a cross-sectional study between Sept 27, 2017, and Oct 11, 2018, among members of livestock-owning households in southern Jordan (Aqaba East, Aqaba West, Ma'an East, and Ma'an West regions), with random selection of households (house and tent dwellings) from Ministry of Agriculture lists via computer-generated randomisation lists. Household visits were done, with questionnaires administered to household members regarding potential risk factors for MERS-CoV exposure in the past 6 months and blood samples and nasal and oral swabs collected, alongside physical examination data including blood pressure and blood glucose. Children younger than 5 years and individuals without capacity to provide informed consent were excluded. Serum was tested for IgG antibodies to MERS-CoV spike protein (S1 subunit) and nucleocapsid (N) protein with in-house indirect ELISAs, and viral RNA was detected in nasal and oral samples by RT-PCR. The primary outcome was evidence of MERS-CoV exposure (ascertained by seropositive status on S1 or N ELISAs, or a positive swab sample on RT-PCR); secondary outcomes were potential associations between possible risk factors and seropositive status. RT-PCR data were to be presented descriptively. Seroprevalence estimates were obtained at the individual and household levels, and associations between hypothetical risk factors and seropositive status were assessed with use of mixed-effects logistic regression. FINDINGS: We sampled 879 household members (median age 27 years [IQR 16-44]; 471 [54%] males and 408 [46%] females) from 204 households. 72 (8%) household members were seropositive on S1 ELISA (n=25, 3%) or N ELISA (n=52, 6%). No positive nasal or oral swab samples were identified on RT-PCR. Within-household clustering was identified for seropositivity on S1 ELISA (intraclass correlation coefficient 0·88 [0·35-0·96]) but not N ELISA (0·00 [0·00-0·27]). On multivariable analysis, S1 ELISA seropositivity was associated with frequently (≥weekly) interacting with young (age <1 year) camels (adjusted odds ratio [ORadj] 3·85 [95% CI 1·41-11·61], p=0·011), with frequent kissing and petting (ORadj 4·56 [1·55-15·42], p=0·0074), and frequent feeding and watering (ORadj 4·97 [1·80-15·29], p=0·0027) of young camels identified as risk activities. Attending camel races (ORadj 3·73 [1·11-12·47], p=0·029), frequently feeding and watering camels of any age (ORadj 3·18 [1·12-10·84], p=0·040), and elevated blood glucose (>150 mg/dL; ORadj 4·59 [1·23-18·36], p=0·021) were also associated with S1 ELISA seropositivity. Among individuals without history of camel contact, S1 ELISA seropositivity was associated with sharing a household with an S1 ELISA-positive household member (ORadj 8·92 [1·06-92·99], p=0·044), and with sharing a household with an S1 ELISA-positive household member with history of camel contact (ORadj 24·74 [2·72-306·14], p=0·0050). N ELISA seropositivity was associated with age (categorical, p=0·0069), a household owning a young camel (age <18 months; ORadj 1·98 [1·02-4·09], p=0·043), and frequently feeding and watering camels of any age (ORadj 1·98 [1·09-3·69]; p=0·025). INTERPRETATION: The study findings highlight the importance of effective MERS-CoV surveillance and control strategies among camel-owning communities in Jordan and the Arabian Peninsula. Juvenile dromedaries pose increased risk for zoonotic MERS-CoV transmission and should be prioritised for vaccination once such vaccines become available. Among high-risk communities, vaccination strategies should prioritise camel-owning households, particularly individuals engaged in camel husbandry or racing, and household members who are older or diabetic, with evidence to suggest secondary within-household transmission. FUNDING: UK Medical Research Council and US National Institute of Allergy and Infectious Diseases.

2.
J Infect Dis ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38487996

ABSTRACT

The most recent Sudan virus (SUDV) outbreak in Uganda was first detected in September 2022 and resulted in 164 laboratory-confirmed cases and 77 deaths. There are no approved vaccines against SUDV. Here, we investigated the protective efficacy of ChAdOx1-biEBOV in cynomolgus macaques using a prime or a prime-boost regimen. ChAdOx1-biEBOV is a replication-deficient simian adenovirus vector encoding SUDV and Ebola virus (EBOV) glycoproteins (GPs). Intramuscular vaccination induced SUDV and EBOV GP-specific IgG responses and neutralizing antibodies. Upon challenge with SUDV, vaccinated animals showed signs of disease like those observed in control animals, and no difference in survival outcomes were measured among all three groups. Viral load in blood samples and in tissue samples obtained after necropsy were not significantly different between groups. Overall, this study highlights the importance of evaluating vaccines in multiple animal models and demonstrates the importance of understanding protective efficacy in both animal models and human hosts.

3.
J Infect Dis ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261786

ABSTRACT

Non-human primate models are essential for the development of vaccines and antivirals against infectious diseases. Rhesus macaques are a widely utilized infection model for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We compared cellular tropism and virus replication in rhesus macaques inoculated with SARS-CoV-2 via the intranasal route, or via exposure to aerosols. Intranasal inoculation results in replication in the upper respiratory tract and limited lower respiratory tract involvement, whereas exposure to aerosols results in infection throughout the respiratory tract. In comparison to multi-route inoculation, the intranasal and aerosol inoculation routes result in reduced SARS-CoV-2 replication in the respiratory tract.

4.
Nat Commun ; 14(1): 6592, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852960

ABSTRACT

Limited data is available on the effect of vaccination and previous virus exposure on the nature of SARS-CoV-2 transmission and immune-pressure on variants. To understand the impact of pre-existing immunity on SARS-CoV-2 airborne transmission efficiency, we perform a transmission chain experiment using naïve, intranasally or intramuscularly AZD1222 vaccinated, and previously infected hamsters. A clear gradient in transmission efficacy is observed: Transmission in hamsters vaccinated via the intramuscular route was reduced over three airborne chains (approx. 60%) compared to naïve animals, whereas transmission in previously infected hamsters and those vaccinated via the intranasal route was reduced by 80%. We also find that the Delta B.1.617.2 variant outcompeted Omicron B.1.1.529 after dual infection within and between hosts in naïve, vaccinated, and previously infected transmission chains, yet an increase in Omicron B.1.1.529 competitiveness is observed in groups with pre-existing immunity against Delta B.1.617.2. This correlates with an increase in the strength of the humoral response against Delta B.1.617.2, with the strongest response seen in previously infected animals. These data highlight the continuous need to improve vaccination strategies and address the additional evolutionary pressure pre-existing immunity may exert on SARS-CoV-2.


Subject(s)
COVID-19 , Vaccines , Animals , Cricetinae , Humans , COVID-19/prevention & control , ChAdOx1 nCoV-19 , SARS-CoV-2
5.
Sci Adv ; 9(41): eadh3150, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824621

ABSTRACT

Research on coronavirus disease 2019 vaccination in immune-deficient/disordered people (IDP) has focused on cancer and organ transplantation populations. In a prospective cohort of 195 IDP and 35 healthy volunteers (HV), antispike immunoglobulin G (IgG) was detected in 88% of IDP after dose 2, increasing to 93% by 6 months after dose 3. Despite high seroconversion, median IgG levels for IDP never surpassed one-third that of HV. IgG binding to Omicron BA.1 was lowest among variants. Angiotensin-converting enzyme 2 pseudo-neutralization only modestly correlated with antispike IgG concentration. IgG levels were not significantly altered by receipt of different messenger RNA-based vaccines, immunomodulating treatments, and prior severe acute respiratory syndrome coronavirus 2 infections. While our data show that three doses of coronavirus disease 2019 vaccinations induce antispike IgG in most IDP, additional doses are needed to increase protection. Because of the notably reduced IgG response to Omicron BA.1, the efficacy of additional vaccinations, including bivalent vaccines, should be studied in this population.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , COVID-19 Vaccines , Prospective Studies , COVID-19/prevention & control , Immunity
6.
Curr Opin Virol ; 63: 101375, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37826865

ABSTRACT

The continued pressure of COVID-19 on public health worldwide underlines the need for a better understanding of the mechanisms of disease caused by severe acute respiratory syndrome coronavirus-2. Though many animal models are readily available for use, the nonhuman primate (NHP) models are considered the gold standard in recapitulating disease progression in humans. In this review, we highlight the relevant research since the beginning of the pandemic to critically evaluate the importance of this model. We characterize the disease's clinical manifestations, aspects of viral replication and shedding, induction of the host's immune response, and pathological findings that broaden our understanding of the importance of NHPs in research to strengthen our public health approach to the pandemic.


Subject(s)
COVID-19 , Primates , Animals , Humans , SARS-CoV-2 , Disease Models, Animal
7.
Emerg Infect Dis ; 29(10): 2065-2072, 2023 10.
Article in English | MEDLINE | ID: mdl-37735747

ABSTRACT

An outbreak of human mpox infection in nonendemic countries appears to have been driven largely by transmission through body fluids or skin-to-skin contact during sexual activity. We evaluated the stability of monkeypox virus (MPXV) in different environments and specific body fluids and tested the effectiveness of decontamination methodologies. MPXV decayed faster at higher temperatures, and rates varied considerably depending on the medium in which virus was suspended, both in solution and on surfaces. More proteinaceous fluids supported greater persistence. Chlorination was an effective decontamination technique, but only at higher concentrations. Wastewater was more difficult to decontaminate than plain deionized water; testing for infectious MPXV could be a helpful addition to PCR-based wastewater surveillance when high levels of viral DNA are detected. Our findings suggest that, because virus stability is sufficient to support environmental MPXV transmission in healthcare settings, exposure and dose-response will be limiting factors for those transmission routes.


Subject(s)
Body Fluids , Wastewater , Humans , Monkeypox virus/genetics , Wastewater-Based Epidemiological Monitoring , DNA, Viral
8.
Emerg Infect Dis ; 29(5): 1033-1037, 2023 05.
Article in English | MEDLINE | ID: mdl-37054984

ABSTRACT

SARS-CoV-2 transmits principally by air; contact and fomite transmission may also occur. Variants of concern are more transmissible than ancestral SARS-CoV-2. We found indications of possible increased aerosol and surface stability for early variants of concern, but not for the Delta and Omicron variants. Stability changes are unlikely to explain increased transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Respiratory Aerosols and Droplets
9.
bioRxiv ; 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36451892

ABSTRACT

SARS-CoV-2 is transmitted principally via air; contact and fomite transmission may also occur. Variants-of-concern (VOCs) are more transmissible than ancestral SARS-CoV-2. We find that early VOCs show greater aerosol and surface stability than the early WA1 strain, but Delta and Omicron do not. Stability changes do not explain increased transmissibility.

10.
NPJ Vaccines ; 7(1): 171, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36543806

ABSTRACT

Nipah virus (NiV) is a highly pathogenic and re-emerging virus, which causes sporadic but severe infections in humans. Currently, no vaccines against NiV have been approved. We previously showed that ChAdOx1 NiV provides full protection against a lethal challenge with NiV Bangladesh (NiV-B) in hamsters. Here, we investigated the efficacy of ChAdOx1 NiV in the lethal African green monkey (AGM) NiV challenge model. AGMs were vaccinated either 4 weeks before challenge (prime vaccination), or 8 and 4 weeks before challenge with ChAdOx1 NiV (prime-boost vaccination). A robust humoral and cellular response was detected starting 14 days post-initial vaccination. Upon challenge, control animals displayed a variety of signs and had to be euthanized between 5 and 7 days post inoculation. In contrast, vaccinated animals showed no signs of disease, and we were unable to detect infectious virus in tissues and all but one swab. No to limited antibodies against fusion protein or nucleoprotein antigen could be detected 42 days post challenge, suggesting that vaccination induced a very robust protective immune response preventing extensive virus replication.

11.
Sci Adv ; 8(46): eade1860, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36399566

ABSTRACT

Since the emergence of SARS-CoV-2, five different variants of concern (VOCs) have been identified: Alpha, Beta, Gamma, Delta, and Omicron. Because of confounding factors in the human population, such as preexisting immunity, comparing severity of disease caused by different VOCs is challenging. Here, we investigate disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Cytokines and chemokines were up-regulated in nasosorption samples of Delta animals compared to Omicron BA.1 and BA.2 animals. Overall, these data suggest that, in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease.

12.
Viruses ; 14(10)2022 10 10.
Article in English | MEDLINE | ID: mdl-36298782

ABSTRACT

Rapid diagnosis is key to containing viral outbreaks. However, for the current monkeypox outbreak the major deterrent to rapid testing is the requirement for higher biocontainment of potentially infectious monkeypox virus specimens. The current CDC guidelines require the DNA extraction process before PCR amplification to be performed under biosafety level 3 unless vaccinated personnel are performing assays. This increases the turn-around time and makes certain laboratories insufficiently equipped to handle specimens from patients with suspected monkeypox infection. We investigated the ability of five commercially available lysis buffers and heat for inactivation of monkeypox virus. We also optimized the use of monkeypox virus in Hologic® Panther Specimen Lysis Buffer for detection of virus in the Panther Fusion® Open Access System using published generic and clade specific monkeypox virus primers and probes.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , Mpox (monkeypox)/epidemiology , Access to Information , Feasibility Studies , Disease Outbreaks , DNA
13.
Ann N Y Acad Sci ; 1518(1): 209-225, 2022 12.
Article in English | MEDLINE | ID: mdl-36183296

ABSTRACT

The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.


Subject(s)
COVID-19 , Ebolavirus , Humans , Pandemics , COVID-19/epidemiology , Disease Outbreaks
14.
bioRxiv ; 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35982658

ABSTRACT

Omicron has demonstrated a competitive advantage over Delta in vaccinated people. To understand this, we designed a transmission chain experiment using naïve, intranasally (IN) or intramuscularly (IM) vaccinated, and previously infected (PI) hamsters. Vaccination and previous infection protected animals from disease and virus replication after Delta and Omicron dual challenge. A gradient in transmission blockage was observed: IM vaccination displayed moderate transmission blockage potential over three airborne chains (approx. 70%), whereas, IN vaccination and PI blocked airborne transmission in >90%. In naïve hamsters, Delta completely outcompeted Omicron within and between hosts after dual infection in onward transmission. Although Delta also outcompeted Omicron in the vaccinated and PI transmission chains, an increase in Omicron competitiveness was observed in these groups. This correlated with the increase in the strength of the humoral response against Delta, with the strongest response seen in PI animals. These data highlight the continuous need to assess the emergence and spread of novel variants in populations with pre-existing immunity and address the additional evolutionary pressure this may exert on the virus.

15.
bioRxiv ; 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35971544

ABSTRACT

Since the emergence of SARS-CoV-2, five different variants of concern (VOCs) have been identified: Alpha, Beta, Gamma, Delta, and Omicron. Due to confounding factors in the human population, such as pre-existing immunity, comparing severity of disease caused by different VOCs is challenging. Here, we investigate disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Cytokines and chemokines were upregulated in nasosorption samples of Delta animals compared to Omicron BA.1 and BA.2 animals. Overall, these data suggests that in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease.

16.
Nat Commun ; 13(1): 4610, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941149

ABSTRACT

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial, even though current real-world data is suggesting good efficacy following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluate the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. Minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 3- or 5- days post inoculation, in contrast to lungs of control animals. In Omicron-challenged hamsters, a single dose of AZD2816 or AZD1222 reduced virus shedding. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Viral , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Cricetinae , Humans , Mesocricetus , SARS-CoV-2
17.
Science ; 377(6606): eabq0839, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35857620

ABSTRACT

To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Betacoronavirus , Coronavirus Infections , Epitopes , Nanoparticles , Spike Glycoprotein, Coronavirus , Zoonoses , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Epitopes/therapeutic use , Macaca , Mice , Nanoparticles/therapeutic use , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Zoonoses/prevention & control , Zoonoses/virology
18.
bioRxiv ; 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35378752

ABSTRACT

To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against conserved/relatively-occluded, rather than variable/immunodominant/exposed, epitopes. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicron and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.

19.
Viruses ; 14(3)2022 03 06.
Article in English | MEDLINE | ID: mdl-35336950

ABSTRACT

The emergence of SARS-CoV-2 in the human population and the resulting COVID-19 pandemic have led to the development of various diagnostic tests. The OraSure InteliSwab™ COVID-19 Rapid Test is a recently developed and FDA emergency use-authorized rapid antigen-detecting test that functions as a lateral flow device targeting the nucleocapsid protein. Due to SARS-CoV-2 evolution, there is a need to evaluate the sensitivity of rapid antigen-detecting tests for new variants, especially variants of concern such as Omicron. In this study, the sensitivity of the OraSure InteliSwab™ Test was investigated using cultured strains of the known variants of concern (VOCs, Alpha, Beta, Gamma, Delta, and Omicron) and the ancestral lineage (lineage A). Based on dilution series in cell culture medium, an approximate limit of detection for each variant was determined. The OraSure InteliSwab™ Test showed an overall comparable performance using recombinant nucleocapsid protein and different cultured variants, with recorded limits of detection ranging between 3.77 × 105 and 9.13 × 105 RNA copies/mL. Finally, the sensitivity was evaluated using oropharyngeal swabs from Syrian golden hamsters inoculated with the six VOCs. Ultimately, the OraSure InteliSwab™ COVID-19 Rapid Test showed no decrease in sensitivity between the ancestral SARS-CoV-2 strain and any VOCs including Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleocapsid Proteins/genetics , Pandemics , SARS-CoV-2/genetics
20.
Res Sq ; 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35194602

ABSTRACT

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirusâ€"vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 was shown to have 74% vaccine efficacy (VE) against symptomatic disease in clinical trials and over 2.5 billion doses of vaccine have been released for worldwide use. However, SARS-CoV-2 continues to circulate and consequently, variants of concern (VoCs) have been detected, with substitutions in the S protein that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial over boosting with vaccines encoding the ancestral S protein, even though current real-world data is suggesting good efficacy against hospitalization and death following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluated the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. We then investigated the efficacy of a single dose of AZD2816 or AZD1222 against the Omicron VoC. As seen previously, minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 5 days post inoculation, in contrast to lungs of control animals. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.

SELECTION OF CITATIONS
SEARCH DETAIL