Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(47): 44851-44864, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31657200

ABSTRACT

We demonstrate the synthesis of polysiloxane-modified inorganic-oxide nanoparticles comprising a TiO2-based pigment (Ti-Pure R-706), which undergo drastic wettability reversal from a hydrophilic wet state to a hydrophobic state upon drying. Furthermore, the dry hydrophobic pigment particles can be reversibly converted back to a hydrophilic form by the application of high shear aqueous milling. Our synthetic approach involves first condensing the cross-linking monomer CH3Si(OH)3 onto the surface of Ti-Pure R-706 at pH 9.5 ± 0.2 in an aqueous suspension. After drying this surface-modified material in the presence of a polyanionic dispersant so as to preserve the primary particle size via dynamic light scattering, it is trimethylsilyl-capped with (CH3)3SiOH, which consumes some residual Si-OH functionalities, and washed to remove all dispersant and excess reagents. Transmission electron microscopy demonstrates a ∼6 nm polysiloxane coating uniformly surrounding the surface of the pigment particle. A 70 wt % (37 vol %) concentrated aqueous slurry of the hydrophobically modified pigment particles prepared in the absence of dispersant exhibits rheological characteristics that are nearly the same as an aqueous dispersion of native unmodified hydrophilic Ti-Pure R-706 comprising an optimal amount of the organic anionic dispersant. It is also possible to synthesize dispersions without the use of an added surfactant and/or dispersant at even higher solid concentrations of up to 75 wt % (43 vol %) in water, conditions at which even the hydrophilic native Ti-Pure R-706 oxide pigment yields a gel-like paste in the absence of a dispersant. Films prepared by drying an aqueous suspension of these pigment particles exhibited a hydrophobic contact angle of ∼125°. When acrylic-based waterborne coatings were prepared comprising these surface-modified Ti Pure R-706 pigments, they showed excellent corrosion protection of a mild steel substrate. These data point to a wettability reversal in which the particles change from hydrophobic to hydrophilic upon high-shear aqueous milling and vice versa upon drying. 29Si CP/MAS NMR spectroscopy highlights the importance of flexibility of the polysiloxane coating for achieving this wettability reversal, a result that emphasizes the importance of surface reconstruction.

2.
Langmuir ; 34(37): 10993-11002, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30142976

ABSTRACT

Hydrophobically modified ethoxylated urethane (HEUR) thickeners are widely used as rheology modifiers for waterborne paints. Although the rheology of HEUR solutions in water is fairly well-understood, their impact on the rheology of waterborne latex/pigment suspensions (formulated paints) is more complicated. We study the shear rheology of model HEUR/latex/TiO2 suspensions in water and investigate the dependence of both oscillatory and steady shear behaviors on the strength of the HEUR hydrophobes. We observe that in both oscillatory and steady shear experiments, rheological curves could be shifted onto a single master curve, demonstrating a "time-hydrophobe superposition". We also note that the oscillatory shear behavior exhibits a power-law spectrum of relaxation times, unlike the single-Maxwellian behavior of pure HEUR solutions. On the basis of these results and earlier experimental and theoretical findings, we propose that the rheology of the HEUR-thickened latex/TiO2 suspensions is mainly determined by the transient network of HEUR-bridged latex particles, with a broad distribution of the characteristic lifetimes of the bridge. The model is found to be in good qualitative and semiquantitative agreement with the experiments for both steady shear and oscillatory shear.

3.
Chem Soc Rev ; 46(12): 3792-3807, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28470250

ABSTRACT

The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with less cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. These technologies also represent the most important considerations in architectural coating design.

4.
ACS Macro Lett ; 6(7): 716-720, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-35650876

ABSTRACT

Hydrophobically modified ethylene oxide urethane (HEUR) associative thickeners are widely used to modify the rheology of waterborne paints. Understanding the normal stress behavior of the HEUR-based paints under high shear is critical for many applications such as brush drag and spreading. We observed that the first normal stress difference, N1, at high shear (large Weissenberg number) can be positive or negative depending on the HEUR hydrophobe strength and concentration. We propose that the algebraic sign of the N1 is primarily controlled by two factors: (a) adsorption of HEURs on the latex surface and (b) the ability of HEURs to form transient molecular bridges between latex particles. Such transient bridges are favored for dispersions with small interparticle distances and dense surface coverages; in these systems; HEUR-bridged latex microstructures flow-align in high shear and exhibit positive N1. In the absence of transient bridges (large interparticle distances, low surface coverage), the dispersion rheology is similar to that of weakly interacting spheres, exhibiting negative N1. The results are summarized in a simplified phase diagram connecting formulation, microstructure, and the N1 behavior.

5.
Langmuir ; 32(2): 428-41, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26735020

ABSTRACT

Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the double layer assume sharp interfaces bearing fixed uniform charge, and so cannot describe aqueous binder particle surfaces, which are soft and diffuse, and bear mobile charge from ionic surfactants as well as grafted multivalent oligomers. To treat this industrially important system, we use atomistic molecular dynamics simulations to investigate a structurally realistic model of commercial binder particle surfaces, informed by extensive characterization of particle synthesis and surface properties. We determine the interfacial profiles of polymer, water, bound and free ions, from which the charge density and electrostatic potential can be calculated. We extend the traditional definitions of the inner and outer Helmholtz planes to our diffuse interfaces. Beyond the Stern layer, the simulated electrostatic potential is well described by the Poisson-Boltzmann equation. The potential at the outer Helmholtz plane compares well to the experimental zeta potential. We compare particle surfaces bearing two types of charge groups, ionic surfactant and multivalent oligomers, with and without added salt. Although the bare charge density of a surface bearing multivalent oligomers is much higher than that of a surfactant-bearing surface at realistic coverage, greater counterion condensation leads to similar zeta potentials for the two systems.

6.
Langmuir ; 32(8): 1929-38, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26788961

ABSTRACT

Polyanion dispersants stabilize aqueous dispersions of hydrophilic (native) inorganic oxide particles, including pigments currently used in paints, which are used at an annual scale of 3 million metric tons. While obtaining stable aqueous dispersions of hydrophobically modified particles has been desired for the promise of improved film performance and water barrier properties, it has until now required either prohibitively complex polyanions, which represent a departure from conventional dispersants, or multistep syntheses based on hybrid-material constructs. Here, we demonstrate the aqueous dispersion of alkylsilane-capped inorganic oxide pigments with conventional polycarboxylate dispersants, such as carboxymethylcellulose (CMC) and polyacrylate, as well as a commercial anionic copolymer. Contact-angle measurements demonstrate that the hydrophobically modified pigments retain significant hydrophobic character even after adsorbing polyanion dispersants. CMC adsorption isotherms demonstrate 92% greater polyanion loading on trimethylsilyl modified hydrophobic particles relative to native oxide at pH 8. However, consistent with prior literature, hydrophobically modified silica particles adsorb polyanions very weakly under these conditions. These data suggest that Lewis acidic heteroatoms such as Al(3+) sites on the pigment surface are necessary for polyanion adsorption. The adsorbed polyanions increase the dispersion stability and zeta potential of the particles. Based on particle sedimentation under centrifugal force, the hydrophobically modified pigments possess greater dispersion stability with polyanions than the corresponding native hydroxylated particles. The polyanions also assist in the aqueous wetting of the hydrophobic particles, facilitating the transition from a dry powder into an aqueous dispersion of primary particles using less agitation than the native hydroxylated pigment. The application of aqueous dispersions of hydrophobically modified oxide particles to waterborne coatings leads to films that display lower water uptake at high relative humidities and greater hydrophilic stain resistances. This improved film performance with hydrophobically modified pigments is the result of better association between latex polymer and pigment in the dry film.

SELECTION OF CITATIONS
SEARCH DETAIL
...