Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Rep ; 49(1): 783-788, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34724128

ABSTRACT

BACKGROUND: Solitary bees, such as the red mason bee (Osmia bicornis), provide important ecosystem services including pollination. In the face of global declines of pollinator abundance, such haplodiploid Hymenopterans have a compounded extinction risk due to the potential for limited genetic diversity. In order to assess the genetic diversity of Osmia bicornis populations, we developed microsatellite markers and characterised them in two populations. METHODS AND RESULTS: Microsatellite sequences were mined from the recently published Osmia bicornis genome, which was assembled from DNA extracted from a single male bee originating from the United Kingdom. Sequences were identified that contained dinucleotide, trinucleotide, and tetranucleotide repeat regions. Seventeen polymorphic microsatellite markers were designed and tested, sixteen of which were developed into four multiplex PCR sets to facilitate cheap, fast and efficient genotyping and were characterised in unrelated females from Germany (n = 19) and England (n = 14). CONCLUSIONS: The microsatellite markers are highly informative, with a combined exclusion probability of 0.997 (first parent), which will enable studies of genetic structure and diversity to inform conservation efforts in this bee.


Subject(s)
Bees/genetics , Genome, Insect , Microsatellite Repeats/genetics , Polymorphism, Genetic , Alleles , Animals , Ecosystem , Female , Gene Frequency , Genetic Loci , Genotype , Genotyping Techniques/methods , Germany , Male , United Kingdom
2.
G3 (Bethesda) ; 10(10): 3479-3488, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32859687

ABSTRACT

Social wasps of the genus Vespula have spread to nearly all landmasses worldwide and have become significant pests in their introduced ranges, affecting economies and biodiversity. Comprehensive genome assemblies and annotations for these species are required to develop the next generation of control strategies and monitor existing chemical control. We sequenced and annotated the genomes of the common wasp (Vespula vulgaris), German wasp (Vespula germanica), and the western yellowjacket (Vespula pensylvanica). Our chromosome-level Vespula assemblies each contain 176-179 Mb of total sequence assembled into 25 scaffolds, with 10-200 unanchored scaffolds, and 16,566-18,948 genes. We annotated gene sets relevant to the applied management of invasive wasp populations, including genes associated with spermatogenesis and development, pesticide resistance, olfactory receptors, immunity and venom. These genomes provide evidence for active DNA methylation in Vespidae and tandem duplications of venom genes. Our genomic resources will contribute to the development of next-generation control strategies, and monitoring potential resistance to chemical control.


Subject(s)
Wasps , Animals , Genomics , Wasps/genetics
3.
J Insect Physiol ; 121: 104003, 2020.
Article in English | MEDLINE | ID: mdl-31883996

ABSTRACT

The fundamental trait underlying eusociality is the reproductive division of labour. In honeybees (Apis mellifera), queens lay eggs while workers forage, defend and care for brood. The division of labour is maintained by pheromones including queen mandibular pheromone (QMP) produced by the queen. QMP constrains reproduction in adult honeybee workers, but in the absence of their queen workers can activate their ovaries and, although they cannot mate, they lay haploid male eggs. The reproductive ground plan hypothesis suggests that reproductive constraint may have evolved by co-opting mechanisms of reproductive control in solitary ancestors. In many insects mating is required to activate or accelerate oogenesis. Here, we use the solitary bee Osmia bicornis (Megachilidae) to test whether reproductive constraint evolved from ancestral control of reproduction by mating status. We present a structural study of the O. bicornis ovary, and compare key stages of oogenesis with honeybee workers. Importantly, we show that mating does not affect any aspect of the reproductive physiology of O. bicornis. We therefore conclude that mechanisms governing reproductive constraint in honeybees were unlikely to have been co-opted from mechanisms pertaining to mating status.


Subject(s)
Bees/physiology , Ovary/cytology , Reproduction/physiology , Animals , Biological Evolution , Female , Oogenesis/physiology , Ovary/physiology , Sexual Behavior, Animal/physiology , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL