Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2306763121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38498711

ABSTRACT

Lactate-proton symporter monocarboxylate transporter 1 (MCT1) facilitates lactic acid export from T cells. Here, we report that MCT1 is mandatory for the development of virus-specific CD8+ T cell memory. MCT1-deficient T cells were exposed to acute pneumovirus (pneumonia virus of mice, PVM) or persistent γ-herpesvirus (Murid herpesvirus 4, MuHV-4) infection. MCT1 was required for the expansion of virus-specific CD8+ T cells and the control of virus replication in the acute phase of infection. This situation prevented the subsequent development of virus-specific T cell memory, a necessary step in containing virus reactivation during γ-herpesvirus latency. Instead, persistent active infection drove virus-specific CD8+ T cells toward functional exhaustion, a phenotype typically seen in chronic viral infections. Mechanistically, MCT1 deficiency sequentially impaired lactic acid efflux from activated CD8+ T cells, caused an intracellular acidification inhibiting glycolysis, disrupted nucleotide synthesis in the upstream pentose phosphate pathway, and halted cell proliferation which, ultimately, promoted functional CD8+ T cell exhaustion instead of memory development. Taken together, our data demonstrate that MCT1 expression is mandatory for inducing T cell memory and controlling viral infection by CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Symporters , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Lactic Acid/metabolism , Biological Transport , Symporters/genetics , Symporters/metabolism
2.
Mol Metab ; 33: 48-66, 2020 03.
Article in English | MEDLINE | ID: mdl-31395464

ABSTRACT

BACKGROUND: Tumors are highly plastic metabolic entities composed of cancer and host cells that can adopt different metabolic phenotypes. For energy production, cancer cells may use 4 main fuels that are shuttled in 5 different metabolic pathways. Glucose fuels glycolysis that can be coupled to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in oxidative cancer cells or to lactic fermentation in proliferating and in hypoxic cancer cells. Lipids fuel lipolysis, glutamine fuels glutaminolysis, and lactate fuels the oxidative pathway of lactate, all of which are coupled to the TCA cycle and OXPHOS for energy production. This review focuses on the latter metabolic pathway. SCOPE OF REVIEW: Lactate, which is prominently produced by glycolytic cells in tumors, was only recently recognized as a major fuel for oxidative cancer cells and as a signaling agent. Its exchanges across membranes are gated by monocarboxylate transporters MCT1-4. This review summarizes the current knowledge about MCT structure, regulation and functions in cancer, with a specific focus on lactate metabolism, lactate-induced angiogenesis and MCT-dependent cancer metastasis. It also describes lactate signaling via cell surface lactate receptor GPR81. MAJOR CONCLUSIONS: Lactate and MCTs, especially MCT1 and MCT4, are important contributors to tumor aggressiveness. Analyses of MCT-deficient (MCT+/- and MCT-/-) animals and (MCT-mutated) humans indicate that they are druggable, with MCT1 inhibitors being in advanced development phase and MCT4 inhibitors still in the discovery phase. Imaging lactate fluxes non-invasively using a lactate tracer for positron emission tomography would further help to identify responders to the treatments.


Subject(s)
Monocarboxylic Acid Transporters/genetics , Muscle Proteins/genetics , Neoplasms/metabolism , Receptors, G-Protein-Coupled/genetics , Symporters/genetics , Animals , Citric Acid Cycle/genetics , Energy Metabolism/genetics , Glucose/metabolism , Humans , Lactic Acid/metabolism , Metabolic Networks and Pathways/genetics , Mice , Mice, Knockout , Neoplasms/genetics , Neoplasms/pathology
3.
Oncotarget ; 8(15): 24415-24428, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28107190

ABSTRACT

Cancers develop metabolic strategies to cope with their microenvironment often characterized by hypoxia, limited nutrient bioavailability and exposure to anticancer treatments. Among these strategies, the metabolic symbiosis based on the exchange of lactate between hypoxic/glycolytic cancer cells that convert glucose to lactate and oxidative cancer cells that preferentially use lactate as an oxidative fuel optimizes the bioavailability of glucose to hypoxic cancer cells. This metabolic cooperation has been described in various human cancers and can provide resistance to anti-angiogenic therapies. It depends on the expression and activity of monocarboxylate transporters (MCTs) at the cell membrane. MCT4 is the main facilitator of lactate export by glycolytic cancer cells, and MCT1 is adapted for lactate uptake by oxidative cancer cells. While MCT1 inhibitor AZD3965 is currently tested in phase I clinical trials and other inhibitors of lactate metabolism have been developed for anticancer therapy, predicting and monitoring a response to the inhibition of lactate uptake is still an unmet clinical need. Here, we report the synthesis, evaluation and in vivo validation of (±)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a tracer of lactate for positron emission tomography. [18F]-FLac offers the possibility to monitor MCT1-dependent lactate uptake and inhibition in tumors in vivo.


Subject(s)
Lactic Acid/metabolism , Monocarboxylic Acid Transporters/metabolism , Neoplasms/metabolism , Radiopharmaceuticals/chemistry , Symporters/metabolism , Cell Proliferation/physiology , Fluorine Radioisotopes/chemistry , Humans , Neoplasms/diagnostic imaging , Neoplasms/pathology , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis
4.
Cancer Cell ; 30(3): 418-431, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27622334

ABSTRACT

Metabolic adaptability is essential for tumor progression and includes cooperation between cancer cells with different metabolic phenotypes. Optimal glucose supply to glycolytic cancer cells occurs when oxidative cancer cells use lactate preferentially to glucose. However, using lactate instead of glucose mimics glucose deprivation, and glucose starvation induces autophagy. We report that lactate sustains autophagy in cancer. In cancer cells preferentially to normal cells, lactate dehydrogenase B (LDHB), catalyzing the conversion of lactate and NAD(+) to pyruvate, NADH and H(+), controls lysosomal acidification, vesicle maturation, and intracellular proteolysis. LDHB activity is necessary for basal autophagy and cancer cell proliferation not only in oxidative cancer cells but also in glycolytic cancer cells.


Subject(s)
L-Lactate Dehydrogenase/metabolism , Lysosomes/enzymology , Neoplasms/enzymology , Neoplasms/pathology , Animals , Autophagy/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Human Umbilical Vein Endothelial Cells , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , L-Lactate Dehydrogenase/genetics , Mice
5.
Biochim Biophys Acta ; 1863(10): 2481-97, 2016 10.
Article in English | MEDLINE | ID: mdl-26993058

ABSTRACT

Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Subject(s)
Brain/metabolism , Monocarboxylic Acid Transporters/metabolism , Neoplasms/metabolism , Animals , Astrocytes/metabolism , Biological Transport, Active , Brain Diseases/metabolism , Cognition/physiology , Gene Expression Regulation , Glycolysis , Humans , Hydrogen-Ion Concentration , Ketone Bodies/metabolism , Lactates/metabolism , Lymphocytes/metabolism , Mice , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neurons/metabolism , Organ Specificity , Oxidative Phosphorylation , Pyruvic Acid/metabolism , Rats
6.
Cell Cycle ; 15(1): 72-83, 2016.
Article in English | MEDLINE | ID: mdl-26636483

ABSTRACT

Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning the relationship between oxidative lactate metabolism and glutamine metabolism. Using SiHa and HeLa human cancer cells, this study reports that intracellular lactate signaling promotes glutamine uptake and metabolism in oxidative cancer cells. It depends on the uptake of extracellular lactate by monocarboxylate transporter 1 (MCT1). Lactate first stabilizes hypoxia-inducible factor-2α (HIF-2α), and HIF-2α then transactivates c-Myc in a pathway that mimics a response to hypoxia. Consequently, lactate-induced c-Myc activation triggers the expression of glutamine transporter ASCT2 and of glutaminase 1 (GLS1), resulting in improved glutamine uptake and catabolism. Elucidation of this metabolic dependence could be of therapeutic interest. First, inhibitors of lactate uptake targeting MCT1 are currently entering clinical trials. They have the potential to indirectly repress glutaminolysis. Second, in oxidative cancer cells, resistance to glutaminolysis inhibition could arise from compensation by oxidative lactate metabolism and increased lactate signaling.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Glutaminase/metabolism , Glutamine/metabolism , Lactic Acid/metabolism , Neoplasms/metabolism , Animals , HeLa Cells , Humans , Lactic Acid/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Monocarboxylic Acid Transporters/metabolism , Oxidation-Reduction/drug effects , Symporters/metabolism
7.
Front Pharmacol ; 6: 228, 2015.
Article in English | MEDLINE | ID: mdl-26528183

ABSTRACT

The lactate anion is currently emerging as an oncometabolite. Lactate, produced and exported by glycolytic and glutaminolytic cells in tumors, can be recycled as an oxidative fuel by oxidative tumors cells. Independently of hypoxia, it can also activate transcription factor hypoxia-inducible factor-1 (HIF-1) in tumor and endothelial cells, promoting angiogenesis. These protumoral activities of lactate depend on lactate uptake, a process primarily facilitated by the inward, passive lactate-proton symporter monocarboxylate transporter 1 (MCT1); the conversion of lactate and NAD(+) to pyruvate, NADH and H(+) by lactate dehydrogenase-1 (LDH-1); and a competition between pyruvate and α-ketoglutarate that inhibits prolylhydroxylases (PHDs). Endothelial cells do not primarily use lactate as an oxidative fuel but, rather, as a signaling agent. In addition to HIF-1, lactate can indeed activate transcription factor nuclear factor-κB (NF-κB) in these cells, through a mechanism not only depending on PHD inhibition but also on NADH alimenting NAD(P)H oxidases to generate reactive oxygen species (ROS). While NF-κB activity in endothelial cells promotes angiogenesis, NF-κB activation in tumor cells is known to stimulate tumor progression by conferring resistance to apoptosis, stemness, pro-angiogenic and metastatic capabilities. In this study, we therefore tested whether exogenous lactate could activate NF-κB in oxidative tumor cells equipped for lactate signaling. We report that, precisely because they are oxidative, HeLa and SiHa human tumor cells do not activate NF-κB in response to lactate. Indeed, while lactate-derived pyruvate is well-known to inhibit PHDs in these cells, we found that NADH aliments oxidative phosphorylation (OXPHOS) in mitochondria rather than NAD(P)H oxidases in the cytosol. These data were confirmed using oxidative human Cal27 and MCF7 tumor cells. This new information positions the malate-aspartate shuttle as a key player in the oxidative metabolism of lactate: similar to glycolysis that aliments OXPHOS with pyruvate produced by pyruvate kinase and NADH produced by glyceraldehyde-3-phosphate dehydrogenase (GAPDH), oxidative lactate metabolism aliments OXPHOS in oxidative tumor cells with pyruvate and NADH produced by LDH1.

8.
Br J Nutr ; 109(5): 802-9, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-22676910

ABSTRACT

Pomegranate extracts have been used for centuries in traditional medicine to confer health benefits in a number of inflammatory diseases, microbial infections and cancer. Peel fruit are rich in polyphenols that exhibit antioxidant and anti-inflammatory capacities in vitro. Recent studies strongly suggest that the gut microbiota is an environmental factor to be taken into account when assessing the risk factors related to obesity. The aim of the present study was to test the prebiotic potency of a pomegranate peel extract (PPE) rich in polyphenols in a nutritional model of obesity associated with hypercholesterolaemia and inflammatory disorders. Balb/c mice were fed either a control diet or a high-fat (HF) diet with or without PPE (6 mg/d per mouse) over a period of 4 weeks. Interestingly, PPE supplementation increased caecal content weight and caecal pool of bifidobacteria. It did not significantly modify body weight gain, glycaemia, glucose tolerance and inflammatory markers measured in the serum. However, it reduced the serum level of cholesterol (total and LDL) induced by HF feeding. Furthermore, it counteracted the HF-induced expression of inflammatory markers both in the colon and the visceral adipose tissue. Together, these findings support that pomegranate constitutes a promising food in the control of atherogenic and inflammatory disorders associated with diet-induced obesity. Knowing the poor bioavailability of pomegranate polyphenols, its bifidogenic effect observed after PPE consumption suggests the involvement of the gut microbiota in the management of host metabolism by polyphenolic compounds present in pomegranate.


Subject(s)
Hypercholesterolemia/drug therapy , Inflammation/drug therapy , Lythraceae/chemistry , Obesity/etiology , Plant Extracts/administration & dosage , Polyphenols/administration & dosage , Animals , Bifidobacterium/growth & development , Cecum/microbiology , Chemokines/analysis , Chemokines/blood , Cytokines/analysis , Cytokines/blood , Diet, High-Fat/adverse effects , Fruit/chemistry , Glucose Intolerance , Hypercholesterolemia/etiology , Inflammation/etiology , Lipids/analysis , Liver/chemistry , Male , Mice , Mice, Inbred BALB C , Obesity/physiopathology , Peritonitis/metabolism , Peritonitis/microbiology , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...