Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
AoB Plants ; 16(2): plae021, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38650718

ABSTRACT

Mungbean is an important source of plant protein for consumers and a high-value export crop for growers across Asia, Australia and Africa. However, many commercial cultivars are highly vulnerable to biotic stresses, which rapidly reduce yield within the season. Fusarium oxysporum is a soil-borne pathogen that is a growing concern for mungbean growers globally. This pathogen causes Fusarium wilt by infecting the root system of the plant resulting in devastating yield reductions. To understand the impact of Fusarium on mungbean development and productivity and to identify tolerant genotypes, a panel of 23 diverse accessions was studied. Field trials conducted in 2016 and 2021 in Warwick, Queensland, Australia under rainfed conditions investigated the variation in phenology, canopy and yield component traits under disease and disease-free conditions. Analyses revealed a high degree of genetic variation for all traits. By comparing the performance of these traits across these two environments, we identified key traits that underpin yield under disease and disease-free conditions. Aboveground biomass components at 50 % flowering were identified as significant drivers of yield development under disease-free conditions and when impacted by Fusarium resulted in up to 96 % yield reduction. Additionally, eight genotypes were identified to be tolerant to Fusarium. These genotypes were found to display differing phenological and morphological behaviours, thereby demonstrating the potential to breed tolerant lines with a range of diverse trait variations. The identification of tolerant genotypes that sustain yield under disease pressure may be exploited in crop improvement programs.

2.
Environ Res ; 247: 117983, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38163541

ABSTRACT

BACKGROUND: Grasses populate most biogeographical zones, and their diversity influences allergic sensitisation to pollen. Previously, the contribution of different Poaceae subfamilies to airborne pollen has mostly been inferred from historical herbarium records. We recently applied environmental (e)DNA metabarcoding at one subtropical site revealing that successive airborne grass pollen peaks were derived from repeated flowering of Chloridoid and Panicoid grasses over a season. This study aimed to compare spatiotemporal patterns in grass pollen exposure across seasons and climate zones. METHODS: Airborne pollen concentrations across two austral pollen seasons spanning 2017-2019 at subtropical (Mutdapilly and Rocklea, Queensland) and temperate (Macquarie Park and Richmond, New South Wales) sites, were determined with a routine volumetric impaction sampler and counting by light microscopy. Poaceae rbcL metabarcode sequences amplified from daily pollen samples collected once per week were assigned to subfamily and genus using a ribosomal classifier and compared with Atlas of Living Australia sighting records. RESULTS: eDNA analysis revealed distinct dominance patterns of grass pollen at various sites: Panicoid grasses prevailed in both subtropical Mutdapilly and temperate Macquarie Park, whilst Chloridoid grasses dominated the subtropical Rocklea site. Overall, subtropical sites showed significantly higher proportion of pollen from Chloridoid grasses than temperate sites, whereas the temperate sites showed a significantly higher proportion of pollen from Pooideae grasses than subtropical sites. Timing of airborne Pooid (spring), Panicoid and Chloridoid (late spring to autumn), and Arundinoid (autumn) pollen were significantly related to number of days from mid-winter. Proportions of eDNA for subfamilies correlated with distributions grass sighting records between climate zones. CONCLUSIONS: eDNA analysis enabled finer taxonomic discernment of Poaceae pollen records across seasons and climate zones with implications for understanding adaptation of grasslands to climate change, and the complexity of pollen exposure for patients with allergic respiratory diseases.


Subject(s)
DNA, Environmental , Poaceae , Humans , Poaceae/genetics , Seasons , Allergens/analysis , Pollen/genetics
3.
Environ Res ; 214(Pt 1): 113762, 2022 11.
Article in English | MEDLINE | ID: mdl-35779617

ABSTRACT

BACKGROUND: Allergic rhinitis affects half a billion people globally, including a fifth of the Australian population. As the foremost outdoor allergen source, ambient grass pollen exposure is likely to be altered by climate change. The AusPollen Partnership aimed to standardize pollen monitoring and examine broad-scale biogeographical and meteorological factors influencing interannual variation in seasonality of grass pollen aerobiology in Australia. METHODS: Daily airborne grass and other pollen concentrations in four eastern Australian cities separated by over 1700 km, were simultaneously monitored using Hirst-style samplers following the Australian Interim Pollen and Spore Monitoring Standard and Protocols over four seasons from 2016 to 2020. The grass seasonal pollen integral was determined. Gridded rainfall, temperature, and satellite-derived grassland sources up to 100 km from the monitoring site were analysed. RESULTS: The complexity of grass pollen seasons was related to latitude with multiple major summer-autumn peaks in Brisbane, major spring and minor summer peaks in Sydney and Canberra, and single major spring peaks occurring in Melbourne. The subtropical site of Brisbane showed a higher proportion of grass out of total pollen than more temperate sites. The magnitude of the grass seasonal pollen integral was correlated with pasture greenness, rainfall and number of days over 30 °C, preceding and within the season, up to 100 km radii from monitoring sites. CONCLUSIONS: Interannual fluctuations in Australian grass pollen season magnitude are strongly influenced by regional biogeography and both pre- and in-season weather. This first continental scale, Southern Hemisphere standardized aerobiology dataset forms the basis to track shifts in pollen seasonality, biodiversity and impacts on allergic respiratory diseases.


Subject(s)
Allergens , Pollen , Australia , Humans , Meteorological Concepts , Poaceae , Seasons
4.
Front Allergy ; 2: 705313, 2021.
Article in English | MEDLINE | ID: mdl-35387005

ABSTRACT

Grass pollen is the major outdoor trigger of allergic respiratory diseases. Climate change is influencing pollen seasonality in Northern Hemisphere temperate regions, but many aspects of the effects on grass pollen remain unclear. Carbon dioxide and temperature rises could increase the distribution of subtropical grasses, however, medium term shifts in grass pollen in subtropical climates have not yet been analysed. This study investigates changes in grass pollen aerobiology in a subtropical city of Brisbane, Australia, between the two available monitoring periods, 1994-1999 and 2016-2020. Potential drivers of pollen change were examined including weather and satellite-derived vegetation indicators. The magnitude of the seasonal pollen index for grass showed almost a three-fold increase for 2016-2020 over 1994-1999. The number and proportion of high and extreme grass pollen days in the recent period increased compared to earlier monitoring. Statistically significant changes were also identified for distributions of CO2, satellite-derived seasonal vegetation health indices, and daily maximum temperatures, but not for minimum temperatures, daily rainfall, or seasonal fraction of green groundcover. Quarterly grass pollen levels were correlated with corresponding vegetation health indices, and with green groundcover fraction, suggesting that seasonal-scale plant health was higher in the latter period. The magnitude of grass pollen exposure in the subtropical region of Brisbane has increased markedly in the recent past, posing an increased environmental health threat. This study suggests the need for continuous pollen monitoring to track and respond to the possible effects of climate change on grass pollen loads.

5.
Ecol Evol ; 11(8): 3488-3500, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33362921

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic has impacted educational systems worldwide during 2020, including primary and secondary schooling. To enable students of a local secondary school in Brisbane, Queensland, to continue with their practical agricultural science learning and facilitate online learning, a "Grass Gazers" citizen science scoping project was designed and rapidly implemented as a collaboration between the school and a multidisciplinary university research group focused on pollen allergy. Here, we reflect on the process of developing and implementing this project from the perspective of the school and the university. A learning package including modules on pollen identification, tracking grass species, measuring field greenness, using a citizen science data entry platform, forensic palynology, as well as video guides, risk assessment and feedback forms were generated. Junior agriculture science students participated in the learning via online lessons and independent data collection in their own local neighborhood and/or school grounds situated within urban environments. The university research group and school coordinator, operating in their own distributed work environments, had to develop, source, adopt, and/or adapt material rapidly to meet the unique requirements of the project. The experience allowed two-way knowledge exchange between the secondary and tertiary education sectors. Participating students were introduced to real-world research and were able to engage in outdoor learning during a time when online, indoor, desk-based learning dominated their studies. The unique context of restrictions imposed by the social isolation policies, as well as government Public Health and Department of Education directives, allowed the team to respond by adapting teaching and research activity to develop and trial learning modules and citizen science tools. The project provided a focus to motivate and connect teachers, academic staff, and school students during a difficult circumstance. Extension of this citizen project for the purposes of research and secondary school learning has the potential to offer ongoing benefits for grassland ecology data acquisition and student exposure to real-world science.

SELECTION OF CITATIONS
SEARCH DETAIL
...