Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
J Antimicrob Chemother ; 79(4): 891-896, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38412336

ABSTRACT

OBJECTIVES: This study aims to elucidate the genomic dynamics driving the emergence of antimicrobial resistance (AMR), with a specific focus on the interplay between AMR and antimicrobial usage. METHODS: We conducted a comprehensive analysis using a ST239 methicillin-resistant Staphylococcus aureus (MRSA) dataset over a continuous 12-year period from a single hospital. Genomic analyses were performed tracking the changes in MRSA populations, particularly the emergence of reduced vancomycin susceptibility, and assessing the impact of glycopeptide use on these emergence events. RESULTS: Our findings reveal a significant correlation between hospital glycopeptide usage and the selection of MRSA strains with reduced vancomycin susceptibility. Genomic analyses provided insights into the molecular mechanisms driving resistance emergence, including the slowing of the molecular clock rate in response to heightened antimicrobial consumption. CONCLUSIONS: In conclusion, this study the highlights the complex dynamics between AMR and antimicrobial use at the hospital level. The observed correlation between antimicrobial consumption and the development of less susceptible MRSA strains underscores the importance of antimicrobial stewardship programmes and the establishment of optimal consumption thresholds for mitigating AMR effectively.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Methicillin-Resistant Staphylococcus aureus/genetics , Vancomycin/pharmacology , Vancomycin/therapeutic use , Staphylococcal Infections/drug therapy , Glycopeptides , Microbial Sensitivity Tests
2.
Infect Control Hosp Epidemiol ; 45(2): 137-143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37702063

ABSTRACT

BACKGROUND: Whole-genome sequencing (WGS) is increasingly used to characterize hospital outbreaks of carbapenemase-producing Enterobacterales (CPE). However, access to WGS is variable and testing is often centralized, leading to delays in reporting of results. OBJECTIVE: We describe the utility of a local sequencing service to promptly respond to facility needs over an 8-year period. METHODS: The study was conducted at Royal Prince Alfred Hospital in Sydney, Australia. All CPE isolated from patient (screening and clinical) and environmental samples from 2015 onward underwent prospective WGS. Results were notified to the infection control unit in real time. When outbreaks were identified, WGS reports were also provided to senior clinicians and the hospital executive administration. Enhanced infection control interventions were refined based on the genomic data. RESULTS: In total, 141 CPE isolates were detected from 123 patients and 5 environmental samples. We identified 9 outbreaks, 4 of which occurred in high-risk wards (intensive care unit and/or solid-organ transplant ward). The largest outbreak involved Enterobacterales containing an NDM gene. WGS detected unexpected links among patients, which led to further investigation of epidemiological data that uncovered the outpatient setting and contaminated equipment as reservoirs for ongoing transmission. Targeted interventions as part of outbreak management halted further transmission. CONCLUSIONS: WGS has transitioned from an emerging technology to an integral part of local CPE control strategies. Our results show the value of embedding this technology in routine surveillance, with timely reports generated in clinically relevant timeframes to inform and optimize local control measures for greatest impact.


Subject(s)
Watchful Waiting , beta-Lactamases , Humans , Prospective Studies , beta-Lactamases/genetics , Bacterial Proteins/genetics , Infection Control , Disease Outbreaks/prevention & control , Hospitals , Genomics
3.
J Med Virol ; 95(12): e29273, 2023 12.
Article in English | MEDLINE | ID: mdl-38050831

ABSTRACT

Detection of HIV drug resistance (HIVDR) is vital to successful anti-retroviral therapy (ART). HIVDR testing to determine drug-resistance mutations is routinely performed in Australia to guide ART choice in newly diagnosed people living with HIV or in cases of treatment failure. In 2022, our clinical microbiology laboratory sought to validate a next-generation sequencing (NGS)-based HIVDR assay to replace the previous Sanger-sequencing (SS)-based ViroSeq. NGS solutions for HIVDR offer higher throughput, lower costs and higher sensitivity for variant detection. We sought to validate the previously described low-cost probe-based NGS method (veSEQ-HIV) for whole-genome recovery and HIVDR-testing in a diagnostic setting. veSEQ-HIV displayed 100% and 98% accuracy in major and minor mutation detection, respectively, and 100% accuracy of subtyping (provided > 1000 mapped reads were obtained). Pairwise comparison exhibited low inter-and intrarun variability across the whole-genome (Jaccard index [J] = 0.993; J = 0.972) and the Pol gene (J = 0.999; J = 0.999), respectively. veSEQ-HIV met all our pre-set criteria based on WHO recommendations and successfully replaced ViroSeq in our laboratory. Scaling-down veSEQ-HIV to a limited batch size and sequencing on Illumina iSeq. 100, allowed easy implementation of the assay into the workflow of a small sequencing laboratory with minimal staff and equipment and the ability to meet clinically relevant test turn-around times. As HIVDR-testing moves from SS- to NGS-based methods and new ART drugs come to market (particularly those with targets outside the Pol region), whole-genome recovery using veSEQ-HIV provides a robust, cost-effective and "future-proof" NGS method for HIVDR-testing.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , HIV-1/genetics , Australia , HIV Infections/drug therapy , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Mutation , Whole Genome Sequencing , Drug Resistance, Viral/genetics , Genotype
4.
Nephrology (Carlton) ; 28(11): 639-643, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37635271

ABSTRACT

We present the case of a recent ABO incompatible kidney transplant recipient with persistent SARS-CoV-2 infection and pneumonitis. Serial whole genome sequencing confirmed intra-host viral evolution, which was used as a surrogate to confirm active viral replication and support re-treatment with antivirals, late in the course of infection. A prolonged course of remdesivir combined with immunosuppression modulation resulted in successful clearance of virus and clinical improvement. The diagnostic process undertaken in this case provides a useful guide for other clinicians when approaching similar patients.


Subject(s)
COVID-19 , Kidney Transplantation , Pneumonia , Humans , ABO Blood-Group System , Blood Group Incompatibility , COVID-19/diagnosis , Graft Rejection , Immunosuppression Therapy , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , SARS-CoV-2/genetics , Male , Middle Aged , Antiviral Agents/therapeutic use , Pneumonia/drug therapy
7.
J Antimicrob Chemother ; 78(6): 1499-1504, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37071589

ABSTRACT

OBJECTIVES: There is clinical uncertainty over the optimal treatment for penicillin-susceptible Staphylococcus aureus (PSSA) infections. Furthermore, there is concern that phenotypic penicillin susceptibility testing methods are not reliably able to detect some blaZ-positive S. aureus. METHODS: Nine S. aureus isolates, including six genetically diverse strains harbouring blaZ, were sent in triplicate to 34 participating laboratories from Australia (n = 14), New Zealand (n = 6), Canada (n = 12), Singapore (n = 1) and Israel (n = 1). We used blaZ PCR as the gold standard to assess susceptibility testing performance of CLSI (P10 disc) and EUCAST (P1 disc) methods. Very major errors (VMEs), major error (MEs) and categorical agreement were calculated. RESULTS: Twenty-two laboratories reported 593 results according to CLSI methodology (P10 disc). Nineteen laboratories reported 513 results according to the EUCAST (P1 disc) method. For CLSI laboratories, the categorical agreement and calculated VME and ME rates were 85% (508/593), 21% (84/396) and 1.5% (3/198), respectively. For EUCAST laboratories, the categorical agreement and calculated VME and ME rates were 93% (475/513), 11% (84/396) and 1% (3/198), respectively. Seven laboratories reported results for both methods, with VME rates of 24% for CLSI and 12% for EUCAST. CONCLUSIONS: The EUCAST method with a P1 disc resulted in a lower VME rate compared with the CLSI methods with a P10 disc. These results should be considered in the context that among collections of PSSA isolates, as determined by automated MIC testing, less than 10% harbour blaZ. Furthermore, the clinical relevance of phenotypically susceptible, but blaZ-positive S. aureus, remains unclear.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Penicillins/pharmacology , Microbial Sensitivity Tests , Clinical Decision-Making , Uncertainty
8.
Res Microbiol ; 174(4): 104046, 2023 May.
Article in English | MEDLINE | ID: mdl-36858192

ABSTRACT

Enterococcus faecium is a major species in infections by vancomycin-resistant enterococci (VRE). New variants of the pathogen have emerged and become dominant in healthcare settings. Two such examples, vanB ST796 and vanA ST1421 sequence types, originally arose in Australia and proceeded to cause VRE outbreaks in other countries. Of concern is the detection in Europe of vancomycin variable enterococci (VVE) belonging to ST1421 that exhibit a vancomycin-susceptible phenotype but can revert to resistant in the presence of vancomycin. The recent application of genome sequencing for increasing our understanding of the evolution and spread of VRE is also explored here.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Vancomycin-Resistant Enterococci/genetics , Enterococcus faecium/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics
9.
Viruses ; 15(2)2023 02 13.
Article in English | MEDLINE | ID: mdl-36851735

ABSTRACT

Australia experienced widespread COVID-19 outbreaks from infection with the SARS-CoV-2 Delta variant between June 2021 and February 2022. A 17-nucleotide frameshift-inducing deletion in ORF7a rapidly became represented at the consensus level (Delta-ORF7aΔ17del) in most Australian outbreak cases. Studies from early in the COVID-19 pandemic suggest that frameshift-inducing deletions in ORF7a do not persist for long in the population; therefore, Delta-ORF7aΔ17del genomes should have disappeared early in the Australian outbreak. In this study, we conducted a retrospective analysis of global Delta genomes to characterise the dynamics of Delta-ORF7aΔ17del over time, determined the frequency of all ORF7a deletions worldwide, and compared global trends with those of the Australian Delta outbreak. We downloaded all GISAID clade GK Delta genomes and scanned them for deletions in ORF7a. For each deletion we identified, we characterised its frequency, the number of countries it was found in, and how long it persisted. Of the 4,018,216 Delta genomes identified globally, 134,751 (~3.35%) possessed an ORF7a deletion, and ORF7aΔ17del was the most common. ORF7aΔ17del was the sole deletion in 28,014 genomes, of which 27,912 (~99.6%) originated from the Australian outbreak. During the outbreak, ~87% of genomes were Delta-ORF7aΔ17del, and genomes with this deletion were sampled until the outbreak's end. These data demonstrate that, contrary to suggestions early in the COVID-19 pandemic, genomes with frameshifting deletions in ORF7a can persist over long time periods. We suggest that the proliferation of Delta-ORF7aΔ17del genomes was likely a chance founder effect. Nonetheless, the frequency of ORF7a deletions in SARS-CoV-2 genomes worldwide suggests they might have some benefit for virus transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Australia/epidemiology , COVID-19/epidemiology , Disease Outbreaks , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
10.
Infect Control Hosp Epidemiol ; 44(7): 1116-1120, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36082784

ABSTRACT

OBJECTIVE: We aimed to demonstrate the role of real-time, on-site, whole-genome sequencing (WGS) of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in the management of hospital outbreaks of coronavirus disease 2019 (COVID-19). DESIGN: This retrospective study was undertaken at our institutions in Sydney, New South Wales, Australia, between July 2021 and April 2022. We included SARS-CoV-2 outbreaks due to SARS-CoV-2 δ (delta) and ο (omicron) variants. All unexpected SARS-CoV-2-positive cases identified within the hospital were managed by the infection control team. An outbreak was defined as 2 or more cases acquired on a single ward. We included only outbreaks with 2 or more suspected transmission events in which WGS was utilized to assist with outbreak assessment and management. RESULTS: We studied 8 outbreaks involving 266 patients and 486 staff, of whom 73 (27.4%) and 39 (8.0%), respectively, tested positive for SARS-CoV-2 during the outbreak management. WGS was used to evaluate the source of the outbreak, to establish transmission chains, to highlight deficiencies in infection control practices, and to delineate between community and healthcare acquired infection. CONCLUSIONS: Real-time, on-site WGS combined with epidemiologic assessment is a useful tool to guide management of hospital SARS-CoV-2 outbreaks. WGS allowed us (1) to establish likely transmission events due to personal protective equipment (PPE) breaches; (2) to detect inadequacies in infection control infrastructure including ventilation; and (3) to confirm multiple viral introductions during periods of high community SARS-CoV-2 transmission. Insights gained from WGS-guides outbreak management directly influenced policy including modifying PPE requirements, instituting routine inpatient SARS-CoV-2 surveillance, and confirmatory SARS-CoV-2 testing prior to placing patients in a cohort setting.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19 Testing , Retrospective Studies , Disease Outbreaks/prevention & control , Hospitals
11.
J Fungi (Basel) ; 8(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36135621

ABSTRACT

Resistance to azoles in Candida tropicalis is increasing and may be mediated by genetic characteristics. Using whole genome sequencing (WGS), we examined the genetic diversity of 82 bloodstream C. tropicalis isolates from two countries and one ATCC strain in a global context. Multilocus sequence typing (MLST) and single nucleotide polymorphism (SNP)-based phylogenies were generated. Minimum inhibitory concentrations (MIC) for antifungal agents were determined using Sensititre YeastOne YO10. Eleven (13.2%) isolates were fluconazole-resistant and 17 (20.5%) were classified as fluconazole-non susceptible (FNS). Together with four Canadian isolates, the genomes of 12 fluconazole-resistant (18 FNS) and 69 fluconazole-susceptible strains were examined for gene mutations associated with drug resistance. Fluconazole-resistant isolates contained a mean of 56 non-synonymous SNPs per isolate in contrast to 36 SNPs in fluconazole-susceptible isolates (interquartile range [IQR] 46−59 vs. 31−48 respectively; p < 0.001). Ten of 18 FNS isolates contained missense ERG11 mutations (amino acid substitutions S154F, Y132F, Y257H). Two echinocandin-non susceptible isolates had homozygous FKS1 mutations (S30P). MLST identified high genetic diversity with 61 diploid sequence types (DSTs), including 53 new DSTs. All four isolates in DST 773 were fluconazole-resistant within clonal complex 2. WGS showed high genetic variation in invasive C. tropicalis; azole resistance was distributed across different lineages but with DST 773 associated with in vitro fluconazole resistance.

12.
Clin Infect Dis ; 75(11): 2027-2034, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35717634

ABSTRACT

Staphylococcus aureus bloodstream (SAB) infection is a common and severe infectious disease, with a 90-day mortality of 15%-30%. Despite this, <3000 people have been randomized into clinical trials of treatments for SAB infection. The limited evidence base partly results from clinical trials for SAB infections being difficult to complete at scale using traditional clinical trial methods. Here we provide the rationale and framework for an adaptive platform trial applied to SAB infections. We detail the design features of the Staphylococcus aureus Network Adaptive Platform (SNAP) trial that will enable multiple questions to be answered as efficiently as possible. The SNAP trial commenced enrolling patients across multiple countries in 2022 with an estimated target sample size of 7000 participants. This approach may serve as an exemplar to increase efficiency of clinical trials for other infectious disease syndromes.


Subject(s)
Bacteremia , Staphylococcal Infections , Humans , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Staphylococcal Infections/drug therapy , Staphylococcus aureus
14.
Biomedicines ; 10(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35203562

ABSTRACT

Fourier transform infrared (FTIR) spectroscopy provides a (bio)chemical snapshot of the sample, and was recently used in proof-of-concept cohort studies for COVID-19 saliva screening. However, the biological basis of the proposed technology has not been established. To investigate underlying pathophysiology, we conducted controlled infection experiments on Vero E6 cells in vitro and K18-hACE2 mice in vivo. Potentially infectious culture supernatant or mouse oral lavage samples were treated with ethanol or 75% (v/v) Trizol for attenuated total reflectance (ATR)-FTIR spectroscopy and proteomics, or RT-PCR, respectively. Controlled infection with UV-inactivated SARS-CoV-2 elicited strong biochemical changes in culture supernatant/oral lavage despite a lack of viral replication, determined by RT-PCR or a cell culture infectious dose 50% assay. Nevertheless, SARS-CoV-2 infection induced additional FTIR signals over UV-inactivated SARS-CoV-2 infection in both cell and mouse models, which correspond to aggregated proteins and RNA. Proteomics of mouse oral lavage revealed increased secretion of kallikreins and immune modulatory proteins. Next, we collected saliva from a cohort of human participants (n = 104) and developed a predictive model for COVID-19 using partial least squares discriminant analysis. While high sensitivity of 93.48% was achieved through leave-one-out cross-validation, COVID-19 patients testing negative on follow-up on the day of saliva sampling using RT-PCR was poorly predicted in this model. Importantly, COVID-19 vaccination did not lead to the misclassification of COVID-19 negatives. Finally, meta-analysis revealed that SARS-CoV-2 induced increases in the amide II band in all arms of this study and in recently published cohort studies, indicative of altered ß-sheet structures in secreted proteins. In conclusion, this study reveals a consistent secretory pathophysiological response to SARS-CoV-2, as well as a simple, robust method for COVID-19 saliva screening using ATR-FTIR.

15.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35215779

ABSTRACT

Whole-genome sequencing of viral isolates is critical for informing transmission patterns and for the ongoing evolution of pathogens, especially during a pandemic. However, when genomes have low variability in the early stages of a pandemic, the impact of technical and/or sequencing errors increases. We quantitatively assessed inter-laboratory differences in consensus genome assemblies of 72 matched SARS-CoV-2-positive specimens sequenced at different laboratories in Sydney, Australia. Raw sequence data were assembled using two different bioinformatics pipelines in parallel, and resulting consensus genomes were compared to detect laboratory-specific differences. Matched genome sequences were predominantly concordant, with a median pairwise identity of 99.997%. Identified differences were predominantly driven by ambiguous site content. Ignoring these produced differences in only 2.3% (5/216) of pairwise comparisons, each differing by a single nucleotide. Matched samples were assigned the same Pango lineage in 98.2% (212/216) of pairwise comparisons, and were mostly assigned to the same phylogenetic clade. However, epidemiological inference based only on single nucleotide variant distances may lead to significant differences in the number of defined clusters if variant allele frequency thresholds for consensus genome generation differ between laboratories. These results underscore the need for a unified, best-practices approach to bioinformatics between laboratories working on a common outbreak problem.


Subject(s)
Computational Biology/standards , Consensus , Genome, Viral , Laboratories/standards , Public Health , SARS-CoV-2/genetics , Australia , Computational Biology/methods , Humans , Phylogeny , SARS-CoV-2/classification , Whole Genome Sequencing
16.
Lancet Microbe ; 3(2): e133-e141, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35146465

ABSTRACT

BACKGROUND: The genomic relationships among Enterococcus faecium isolates are the subject of ongoing research that seeks to clarify the origins of observed lineages and the extent of horizontal gene transfer between them, and to robustly identify links between genotypes and phenotypes. E faecium is considered to form distinct groups-A and B-corresponding to isolates derived from patients who were hospitalised (A) and isolates from humans in the community (B). The additional separation of A into the so-called clades A1 and A2 remains an area of uncertainty. We aimed to investigate the relationships between A1 and non-A1 groups and explore the potential role of non-A1 isolates in shaping the population structure of hospital E faecium. METHODS: We collected short-read sequence data from invited groups that had previously published E faecium genome data. This hospital-based isolate collection could be separated into three groups (or clades, A1, A2, and B) by augmenting the study genomes with published sequences derived from human samples representing the previously defined genomic clusters. We performed phylogenetic analyses, by constructing maximum-likelihood phylogenetic trees, and identified historical recombination events. We assessed the pan-genome, did resistome analysis, and examined the genomic data to identify mobile genetic elements. Each genome underwent chromosome painting by use of ChromoPainter within FineSTRUCTURE software to assess ancestry and identify hybrid groups. We further assessed highly admixed regions to infer recombination directionality. FINDINGS: We assembled a collection of 1095 hospital E faecium sequences from 34 countries, further augmented by 33 published sequences. 997 (88%) of 1128 genomes clustered as A1, 92 (8%) as A2, and 39 (4%) as B. We showed that A1 probably emerged as a clone from within A2 and that, because of ongoing gene flow, hospital isolates currently identified as A2 represent a genetic continuum between A1 and community E faecium. This interchange of genetic material between isolates from different groups results in the emergence of hybrid genomes between clusters. Of the 1128 genomes, 49 (4%) hybrid genomes were identified: 33 previously labelled as A2 and 16 previously labelled as A1. These interactions were fuelled by a directional pattern of recombination mediated by mobile genetic elements. By contrast, the contribution of B group genetic material to A1 was limited to a few small regions of the genome and appeared to be driven by genomic sweep events. INTERPRETATION: A2 and B isolates coming into the hospital form an important reservoir for ongoing A1 adaptation, suggesting that effective long-term control of the effect of E faecium could benefit from strategies to reduce these genomic interactions, such as a focus on reducing the acquisition of hospital A1 strains by patients entering the hospital. FUNDING: Wellcome Trust.


Subject(s)
Enterococcus faecium , Clone Cells , Enterococcus faecium/genetics , Genome, Bacterial/genetics , Genomics , Hospitals , Humans , Phylogeny
17.
Intern Med J ; 51 Suppl 7: 143-176, 2021 11.
Article in English | MEDLINE | ID: mdl-34937136

ABSTRACT

Invasive aspergillosis (IA) in haematology/oncology patients presents as primary infection or breakthrough infection, which can become refractory to antifungal treatment and has a high associated mortality. Other emerging patient risk groups include patients in the intensive care setting with severe respiratory viral infections, including COVID-19. These guidelines present key diagnostic and treatment recommendations in light of advances in knowledge since the previous guidelines in 2014. Culture and histological-based methods remain central to the diagnosis of IA. There is increasing evidence for the utility of non-culture methods employing fungal biomarkers in pre-emptive screening for infection, as well as for IA diagnosis when used in combination. Although azole resistance appears to be uncommon in Australia, susceptibility testing of clinical Aspergillus fumigatus complex isolates is recommended. Voriconazole remains the preferred first-line antifungal agent for treating primary IA, including for extrapulmonary disease. Recommendations for paediatric treatment broadly follow those for adults. For breakthrough and refractory IA, a change in class of antifungal agent is strongly recommended, and agents under clinical trial may need to be considered. Newer immunological-based imaging modalities warrant further study, while surveillance for IA and antifungal resistance remain essential to informing the relevance of current treatment recommendations.


Subject(s)
Aspergillosis , COVID-19 , Adult , Antifungal Agents/therapeutic use , Aspergillosis/diagnosis , Aspergillosis/drug therapy , Aspergillus fumigatus , Child , Drug Resistance, Fungal , Humans , SARS-CoV-2 , Voriconazole/therapeutic use
18.
J Antimicrob Chemother ; 77(1): 31-37, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34718605

ABSTRACT

BACKGROUND: A marked genotype shift among vancomycin-resistant Enterococcus faecium (VREfm) from vanB to vanA in Australia between 2011 and 2015 is a well-known phenomenon. It is hypothesized that this was caused by multiple independent clones emerging simultaneously in different settings and/or regions. OBJECTIVES: To gain insights into the circumstances surrounding the shift from vanB to vanA VREfm in one Australian hospital. METHODS: The genomes of 69 vanA VREfm isolates from St George Hospital collected between 2009 and 2018 were studied. An expansion of ST80 vanA VREfm was noted following a single introduction. ST80 isolates were thus further characterized using hybrid sequencing and contextualized through comparisons with other published Australian ST80 isolates. Phylogenies were constructed with plasmid sequences compared with the index isolate. RESULTS: The 2011 expansion of ST80 vanA VREfm isolates in our institution originated from the 2009 index isolate, from a patient transferred from overseas. Phylogenetic analysis with other Australian ST80 vanA VREfm isolates showed that the 2011 expansion event was unique, with limited spread to adjacent local health districts. Plasmid analysis showed multiple variants, which can also be traced back to the 2009 isolate, consistent with ongoing plasmid adaptation over time. CONCLUSIONS: These findings confirm an expansion event following a VREfm introduction event leading to a sustained clonal and plasmid outbreak over several years. Moreover, it demonstrates the complexity of countrywide replacement events. This study also highlights the use of hybrid sequencing in establishing an epidemiological relationship to the index isolate that was initially inapparent.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Australia/epidemiology , Bacterial Proteins/genetics , Cross Infection/epidemiology , Disease Outbreaks , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/epidemiology , Humans , Phylogeny , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/genetics
19.
Lancet Public Health ; 6(8): e547-e556, 2021 08.
Article in English | MEDLINE | ID: mdl-34252365

ABSTRACT

BACKGROUND: A cornerstone of Australia's ability to control COVID-19 has been effective border control with an extensive supervised quarantine programme. However, a rapid recrudescence of COVID-19 was observed in the state of Victoria in June, 2020. We aim to describe the genomic findings that located the source of this second wave and show the role of genomic epidemiology in the successful elimination of COVID-19 for a second time in Australia. METHODS: In this observational, genomic epidemiological study, we did genomic sequencing of all laboratory-confirmed cases of COVID-19 diagnosed in Victoria, Australia between Jan 25, 2020, and Jan 31, 2021. We did phylogenetic analyses, genomic cluster discovery, and integrated results with epidemiological data (detailed information on demographics, risk factors, and exposure) collected via interview by the Victorian Government Department of Health. Genomic transmission networks were used to group multiple genomic clusters when epidemiological and genomic data suggested they arose from a single importation event and diversified within Victoria. To identify transmission of emergent lineages between Victoria and other states or territories in Australia, all publicly available SARS-CoV-2 sequences uploaded before Feb 11, 2021, were obtained from the national sequence sharing programme AusTrakka, and epidemiological data were obtained from the submitting laboratories. We did phylodynamic analyses to estimate the growth rate, doubling time, and number of days from the first local infection to the collection of the first sequenced genome for the dominant local cluster, and compared our growth estimates to previously published estimates from a similar growth phase of lineage B.1.1.7 (also known as the Alpha variant) in the UK. FINDINGS: Between Jan 25, 2020, and Jan 31, 2021, there were 20 451 laboratory-confirmed cases of COVID-19 in Victoria, Australia, of which 15 431 were submitted for sequencing, and 11 711 met all quality control metrics and were included in our analysis. We identified 595 genomic clusters, with a median of five cases per cluster (IQR 2-11). Overall, samples from 11 503 (98·2%) of 11 711 cases clustered with another sample in Victoria, either within a genomic cluster or transmission network. Genomic analysis revealed that 10 426 cases, including 10 416 (98·4%) of 10 584 locally acquired cases, diagnosed during the second wave (between June and October, 2020) were derived from a single incursion from hotel quarantine, with the outbreak lineage (transmission network G, lineage D.2) rapidly detected in other Australian states and territories. Phylodynamic analyses indicated that the epidemic growth rate of the outbreak lineage in Victoria during the initial growth phase (samples collected between June 4 and July 9, 2020; 47·4 putative transmission events, per branch, per year [1/years; 95% credible interval 26·0-85·0]), was similar to that of other reported variants, such as B.1.1.7 in the UK (mean approximately 71·5 1/years). Strict interventions were implemented, and the outbreak lineage has not been detected in Australia since Oct 29, 2020. Subsequent cases represented independent international or interstate introductions, with limited local spread. INTERPRETATION: Our study highlights how rapid escalation of clonal outbreaks can occur from a single incursion. However, strict quarantine measures and decisive public health responses to emergent cases are effective, even with high epidemic growth rates. Real-time genomic surveillance can alter the way in which public health agencies view and respond to COVID-19 outbreaks. FUNDING: The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19/epidemiology , Epidemiologic Studies , Genomics , Humans , SARS-CoV-2/isolation & purification , Victoria/epidemiology
20.
Front Cell Infect Microbiol ; 11: 636290, 2021.
Article in English | MEDLINE | ID: mdl-34094996

ABSTRACT

Whole genome sequencing (WGS) has had widespread use in the management of microbial outbreaks in a public health setting. Current models encompass sending isolates to a central laboratory for WGS who then produce a report for various levels of government. This model, although beneficial, has multiple shortcomings especially for localised infection control interventions and patient care. One reason for the slow rollout of WGS in clinical diagnostic laboratories has been the requirement for professionally trained personal in both wet lab techniques and in the analysis and interpretation of data, otherwise known as bioinformatics. A further bottleneck has been establishment of regulations in order to certify clinical and technical validity and demonstrate WGS as a verified diagnostic test. Nevertheless, this technology is far superior providing information that would normally require several diagnostic tests to achieve. An obvious barrier to informed outbreak tracking is turnaround time and requires isolates to be sequenced in real-time to rapidly identify chains of transmission. One way this can be achieved is through onsite hospital sequencing with a cumulative analysis approach employed. Onsite, as opposed to centralised sequencing, has added benefits including the increased agility to combine with local infection control staff to iterate through the data, finding links that aide in understanding transmission chains and inform infection control strategies. Our laboratory has recently instituted a pathogen WGS service within a diagnostic laboratory, separate to a public health laboratory. We describe our experience, address the challenges faced and demonstrate the advantages of de-centralised sequencing through real-life scenarios.


Subject(s)
Disease Outbreaks , Laboratories , Diagnostic Tests, Routine , Genome, Bacterial , Humans , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...