Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anal Methods Chem ; 2021: 6628285, 2021.
Article in English | MEDLINE | ID: mdl-33505763

ABSTRACT

In this study, an analytical method for the simultaneous determination of 7 major pharmaceutical residues in Vietnam, namely, carbamazepine, ciprofloxacin, ofloxacin, ketoprofen, paracetamol, sulfamethoxazole, and trimethoprim, in surface water and hospital wastewater has been developed. The method includes enrichment and clean-up steps by solid phase extraction using mix-mode cation exchange, followed by identification and quantification using an ultrahigh-performance liquid chromatography and tandem mass spectrometry and employing electrospray ionization (UPLC-ESI-MS/MS). Seven target compounds were separated on the reversed phase column and detected in multiple reaction monitoring (MRM) mode within 6 minutes. The present study also optimized the operating parameters of the mass spectrometer to achieve the highest analytical signals for all target compounds. All characteristic parameters of the analytical method were investigated, including linearity range, limit of detection, limit of quantification, precision, and accuracy. The important parameter in UPLC-ESI-MS/MS, matrix effect, was assessed and implemented via preextraction and postextraction spiking experiments. The overall recoveries of all target compounds were in the ranges from 55% to 109% and 56 % to 115% for surface water and hospital wastewater, respectively. Detection limits for surface water and hospital wastewater were 0.005-0.015 µg L-1 and 0.014-0.123 µg L-1, respectively. The sensitivity of the developed method was allowed for determination of target compounds at trace level in environmental water samples. The in-house validation of the developed method was performed by spiking experiment in both the surface water and hospital wastewater matrix. The method was then applied to analyze several surface water and hospital wastewater samples taken from West Lake and some hospitals in Vietnam, where the level of these pharmaceutical product residues was still missed. Sulfamethoxazole was present at a high detection frequency in both surface water (33% of analyzed samples) and hospital wastewater (81% of analyzed samples) samples.

2.
Water Sci Technol ; 82(10): 1995-2006, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33263578

ABSTRACT

Vietnam, like many developing countries, is facing serious water quality issues due to discharging wastewaters without treatment or with improper treatment, which can constitute a potential risk for aquatic ecosystems, food safety and human health. Hybrid constructed wetlands with four substrate layers (HCW) and modified hybrid constructed wetland (MHCW-1 and MHCW-2) with seven substrate layers were designed to evaluate the enhanced treatment capacity for wastewaters. To this end, we carried out an outdoor experiment at the Vietnam Academy of Science and Technology, Vietnam to treat its wastewaters from April to August 2019. All constructed wetland units were planted with reed Phragmites australis and cyperus Cyperus alternifolius; and specifically wetland MHCW-2 was cultured with earthworm Perionys excavates. Results indicated that MHCW-1 and MHCW-2 with seven substrate layers had higher removal efficiencies of NO3 --N, TKN and TP than HCW system. More substrate layers in MHCW-1 and MHCW-2 also resulted in increase of Cu and Pb removal efficiencies, with 73.5%, 79.4%, 71.5% and 67.8%, respectively. Particularly, earthworm addition in MHCW-2 was more efficient in decreasing the concentrations of biochemical oxygen demand (BOD5), with removal efficiency over 70%.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Biodegradation, Environmental , Ecosystem , Nutrients , Vietnam , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis , Wetlands
3.
J Anal Methods Chem ; 2019: 3489634, 2019.
Article in English | MEDLINE | ID: mdl-31205797

ABSTRACT

An ultrahigh-performance liquid chromatography in combination with high-resolution mass spectrometry Thermo Q-Extractive Focus Orbitrap MS has been introduced for analysis of multiclass pesticides in vegetable samples collected in Hanoi, Vietnam. Multiclass pesticides were separated on the Thermo Hypersil Gold PFP column utilizing a gradient of the mobile phase consisting of 5 mM ammonium formate, 0.1% formic acid in deionized water, and methanol. The target analytes were detected in the full-scan mode on Thermo Scientific Q-Exactive Focus Orbitrap MS for quantitation at the optimum operating conditions. These conditions included, but not limit to, the resolution of 70000 at the full width at half maximum in both positive and negative mode, mass range from 80 to 1000 m/z, and optimized parameters for the heated electrospray ionization source. The identification of the analytes in real samples was based on retention times, mass to charge ratios, mass accuracies, and MS/MS spectra at the confirmation mode with the inclusion list of target analytes. The mass accuracies of target analytes were from -4.14 ppm (dinotefuran) to 1.42 ppm (cinosulfuron) in the neat solvent and from -3.91 ppm (spinosad D) to 1.29 ppm (cinosulfuron) in the matrix-matched solution. Target analytes in the vegetable-based matrix were extracted by the QuEChERS method. Some critical parameters of the analytical method such as linearity, repeatability, limit of detection, and limit of quantitation have been evaluated and implemented. Excellent LOD and LOQ of the developed method were achieved at the range of 0.04-0.85 and 0.13-2.9 µg·kg-1, respectively. Intraday and interday repeatability of the analytical signal (peak area, n=6) of the developed method were below 3% and 10%, correspondingly. The matrix effect, extraction recovery, and overall recovery were fully investigated by spiking experiments. Experimental results demonstrated that the ionization suppression or enhancement was the main contribution on the overall recoveries of target analytes. Finally, the in-house validated method was applied to pesticides screening in vegetables samples in local villages in Hanoi, Vietnam. The concentrations of all target analytes were below limit of quantitation and lower than US-FDA or EU maximum residue levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...