Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 130(29): 9386-93, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-18582047

ABSTRACT

The formation of a noncovalent triblock copolymer based on a coiled-coil peptide motif is demonstrated in solution. A specific peptide pair (E and K) able to assemble into heterocoiled coils was chosen as the middle block of the polymer and conjugated to poly(ethylene glycol) (PEG) and polystyrene (PS) as the outer blocks. Mixing equimolar amounts of the polymer-peptide block copolymers PS-E and K-PEG resulted in the formation of coiled-coil complexes between the peptides and subsequently in the formation of the amphiphilic triblock copolymer PS-E/K-PEG. Aqueous self-assembly of the separate peptides (E and K), the block copolymers (PS-E and K-PEG), and equimolar mixtures thereof was studied by circular dichroism, dynamic light scattering, and cryogenic transmission electron microscopy. It was found that the noncovalent PS-E/K-PEG copolymer assembled into rodlike micelles, while in all other cases, spherical micelles were observed. Temperature-dependent studies revealed the reversible nature of the coiled-coil complex and the influence of this on the morphology of the aggregate. A possible mechanism for these transitions based on the interfacial free energy and the free energy of the hydrophobic blocks is discussed. The self-assembly of the polymer-peptide conjugates is compared to that of polystyrene-b-poly(ethylene glycol), emphasizing the importance of the coiled-coil peptide block in determining micellar structure and dynamic behavior.


Subject(s)
Biomimetic Materials/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Polystyrenes/chemistry , Circular Dichroism , Light , Micelles , Models, Molecular , Molecular Conformation , Protein Structure, Quaternary , Protein Structure, Secondary , Scattering, Radiation , Temperature
2.
J Am Chem Soc ; 129(50): 15631-8, 2007 Dec 19.
Article in English | MEDLINE | ID: mdl-18027942

ABSTRACT

We provide detailed insight into complex supramolecular assembly processes by fully characterizing a multicomponent model system using dynamic light scattering, cryogenic transmission electron microscopy, atomic force microscopy, and various NMR techniques. First, a preassembly of a host molecule (the fifth-generation urea-adamantyl poly(propylene imine) dendrimer) and 32 guest molecules (a water- and chloroform-soluble ureidoacetic acid guest) was made in chloroform. The association constant in chloroform is concealed by guest self-association and is therefore higher than 10(3) M(-1). Via the neat state the single-host complex was transferred to water, where larger dendrimer-based assemblies were formed. The core of these assemblies, consisting of multiple host molecules (on average three), is kinetically trapped upon dissolution in water, and its size is constant irrespective of the concentration. The guest molecules forming the corona of the assemblies, however, stay dynamic since they are still in rapid exchange on the NMR time scale, as they were in chloroform. A stepwise noncovalent synthesis provides a means to obtain metastable dynamic supramolecular assemblies in water, structures that cannot be formed in one step.


Subject(s)
Dendrimers/chemistry , Water/chemistry , Chloroform/chemistry , Computer Simulation , Cryoelectron Microscopy , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Models, Chemical , Molecular Structure , Titrimetry
3.
Biomacromolecules ; 7(12): 3385-95, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17154467

ABSTRACT

The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in terms of mechanical properties, processibility and histocompatibility. Comparison of the data with those obtained from the structurally related poly(urethane urea) 1 revealed that the difference in hard segment structure does not significantly affect the potency for application as a biomaterial. Nevertheless, the small differences in hard block composition had a strong effect on the molecular recognition properties of the hydrogen bonding segments. High selectivity was found for poly(urea) 2 in which bisureidobutylene-functionalized azobenzene dye 3 was selectively incorporated while bisureidopentylene-functionalized azobenzene dye 4 was completely released. In contrast, the incorporation of both dyes in poly(urethane urea) 1 led in both cases to their gradual release in time. Thermal analysis of the polymers in combination with variable temperature infrared experiments indicated that the hard blocks in 1 showed a sharp melting point, whereas those in 2 showed a very broad melting trajectory. This suggests a more precise organization of the hydrogen bonding segments in the hard blocks of poly(urea) 2 compared to poly(urethane urea) 1 and explains the results from the molecular recognition experiments. Preliminary results revealed that a bisureidobutylene-functionalized GRGDS peptide showed more supramolecular interaction with the PCL-based poly(urea), containing the bisureidobutylene recognition unit, as compared to HMW PCL, lacking this recognition unit.


Subject(s)
Elastomers/chemistry , Polyesters/chemistry , 3T3 Cells , Animals , Biocompatible Materials , Calorimetry, Differential Scanning , Cell Division , Elastomers/chemical synthesis , Mice , Microscopy, Atomic Force , Models, Molecular , Molecular Conformation , Polyesters/chemical synthesis , Surface Properties , Thermodynamics
4.
Biomaterials ; 27(32): 5490-501, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16887183

ABSTRACT

We show that materials with a diverse range of mechanical and biological properties can be obtained using a modular approach by simply mixing different ratios of oligocaprolactones that are either end-functionalized or chain-extended with quadruple hydrogen bonding ureido-pyrimidinone (UPy) moieties. The use of two UPy-synthons allows for easy synthesis of UPy-modified polymers resulting in high yields. Comparison of end-functionalized UPy-polymers with chain-extended UPy-polymers shows that these polymers behave distinctively different regarding their material and biological properties. The end-modified UPy-polymer is rather stiff and brittle due to its high crystallinity. Disks made of this material fractures after subcutaneous implantation. The material shows a low inflammatory response which is accompanied by the formation of a fibrous capsule, reflecting the inertness of the material. The chain-extended UPy-material on the contrary is practically free of crystalline domains and shows clear flexible properties. This material deforms after in-vivo implantation, accompanied with cellular infiltration. By mixing both polymers, materials with intermediate properties concerning their mechanical and biological behaviour can be obtained. Surprisingly, a 20:80 mixture of both polymers with the chain-extended UPy-polymer in excess shows flexible properties without visible deformation upon implantation for 42 days. This mixture, a blend formed by intimate mixing through UPy-UPy interaction, also shows a mild tissue response accompanied with the formation of a thin capsule. The material does not become more crystalline upon implantation. Hence, this mixture might be an ideal scaffold material for soft tissue engineering due to its flexibility and diminished fibrous tissue formation, and illustrates the strength of the modular approach.


Subject(s)
Polyesters/chemistry , Tissue Engineering/methods , Animals , Biocompatible Materials , Calorimetry, Differential Scanning , Male , Molecular Structure , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Rats , Temperature , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...