Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 8: e9750, 2020.
Article in English | MEDLINE | ID: mdl-32974092

ABSTRACT

The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.

2.
Front Plant Sci ; 11: 580653, 2020.
Article in English | MEDLINE | ID: mdl-33519841

ABSTRACT

Exotic Populus taxa pose a threat to the success of riparian forest restoration in floodplain areas. We evaluated the impact of exotic Populus taxa on softwood riparian forest development along the river Common Meuse after introducing native Populus nigra and after the re-establishment of the natural river dynamics. We sampled 154 poplar seedlings that spontaneously colonized restored habitat and assessed their taxonomy based on diagnostic chloroplast and nuclear microsatellite markers. Furthermore, by using a paternity analysis on 72 seedlings resulting from six open pollinated P. nigra females, we investigated natural hybridization between frequently planted cultivated poplars and native P. nigra. The majority of the poplar seedlings from the gravel banks analyzed where identified as P. nigra; only 2% of the sampled seedlings exhibited genes of exotic poplar species. Similarly, the majority of the seedlings from the open pollinated progenies were identified as P. nigra. For three seedlings (4%), paternity was assigned to a cultivar of P. × canadensis. Almost two decades after reintroducing P. nigra, the constitution of the seed and pollen pools changed in the study area in favor of reproduction of the native species and at the expense of the exotic poplar species. This study indicates that, although significant gene flow form exotic poplars is observed in European floodplains, restoration programs of the native P. nigra can vigorously outcompete the exotic gene flows and strongly reduce the impact of exotic Populus taxa on the softwood riparian forest development.

3.
Sci Total Environ ; 580: 34-42, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27939995

ABSTRACT

In a context of increasing landscape modifications and climatic changes, scale hierarchy becomes an ever more crucial issue to integrate in the analysis of drivers and stressors of biological communities, especially in river networks. To cope with this issue, we developed (i) spatial hierarchical models of functional diversity of stream invertebrate communities to assess the relative influence of local- vs. regional-scale factors in structuring community assembly, and (ii) analysis of metacommunity elements to determine the ecological processes behind the structuring. The spatial structuring of benthic invertebrate communities was investigated over 568 sites in South-eastern France. Community structure was mainly driven by the altitudinal gradient and spring flow variation at broad scales, with functional diversity gradually decreasing with elevation and being maximized at intermediate levels of flow variability. According to the 'elements of metacommunity structure' analysis, the prevailing influence of the altitudinal gradient was also supported by a Clementsian structuration of invertebrate communities. Conversely, the influence of observed climatic changes in temperature and rainfall was weak and observed only at fine scales. As a result, natural environmental filters were stronger drivers of the functional diversity of communities than human-induced stressors (e.g. water pollution and hydromorphological alterations). More broadly, our results suggest that management needs to embrace the possibilities of gathering high spatial and taxonomical resolution data when analysing and predicting flow variation and climate change effects in order to preserve and restore functionally diverse communities. Moreover, to develop environmental flow schemes or restoration and climate change adaptation strategies for freshwater communities, local and regional processes need to be addressed simultaneously; equally responsible as drivers of community diversity.


Subject(s)
Climate Change , Ecosystem , Invertebrates , Rivers , Animals , Ecology , France
4.
J Environ Manage ; 202(Pt 2): 437-446, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-27889364

ABSTRACT

Floodplain landscapes are highly fragmented by river regulation resulting in habitat degradation and flood regime perturbation, posing risks to population persistence. Climate change is expected to pose supplementary risks in this context of fragmented landscapes, and especially for river systems adaptation management programs are developed. The association of habitat quality and quantity with the landscape dynamics and resilience to human-induced disturbances is still poorly understood in the context of species survival and colonization processes, but essential to prioritize conservation and restoration actions. We present a modelling approach that elucidates network connectivity and landscape dynamics in spatial and temporal context to identify vital corridors and conservation priorities in the Loire river and its tributaries. Alteration of flooding and flow regimes is believed to be critical to population dynamics in river ecosystems. Still, little is known of critical levels of alteration both spatially and temporally. We applied metapopulation modelling approaches for a dispersal-limited tree species, white elm; and a recruitment-limited tree species, black poplar. In different model steps the connectivity and natural dynamics of the river landscape are confronted with physical alterations (dams/dykes) to species survival and then future scenarios for climatic changes and potential adaptation measures are entered in the model and translated in population persistence over the river basin. For the two tree species we highlighted crucial network zones in relation to habitat quality and connectivity. Where the human impact model already shows currently restricted metapopulation development, climate change is projected to aggravate this persistence perspective substantially. For both species a significant drawback to the basin population is observed, with 1/3 for elm and » for poplar after 25 years already. But proposed adaptation measures prove effective to even bring metapopulation strength and persistence up to a level above the current level.


Subject(s)
Climate Change , Rivers , Trees , Ecosystem , Models, Biological , Population Dynamics
5.
Sci Total Environ ; 565: 481-488, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27183462

ABSTRACT

The positive effects of water quality improvement on stream biodiversity in the temperate regions are expected to be at risk with the projected climatic changes. However, the processes and mechanisms behind the predicted threats remain uncertain. From long-term series of benthic invertebrate samples from temperate rivers and streams in France, we analyzed diversity and composition shifts over time in relation to geographic elements and human stressors. Mechanisms for community changes were investigated with a trait-based analysis for the entire dataset and for a selected caddisfly community module. We observed a 42% increase in the taxonomic richness of stream invertebrate communities over the last 25years. A gradual trend induced by water quality improvement was distinguished from a more abrupt climate change-induced shift in communities around the year 2000. Trophic amplification - the intensification of trophic interactions and pathways through the food web - was identified as the mechanism behind the strong community shift. Four lines of evidence for this trophic amplification are highlighted: (i) higher dissolved oxygen concentrations indicated a shift in primary production, (ii) the trait-based analysis of entire communities showed a bottom-up food web amplification, (iii) the trait-based analysis of the community module evidenced feeding strategy shifts and increased food web interactions, and (iv) the abundance analysis of the community module showed a productivity increase. These results lend credit to persistent investments in water quality for improving stream biodiversity, and contrary to expectation, climate change impacts seem so far to have reinforced these positive effects.


Subject(s)
Biodiversity , Climate Change , Invertebrates , Rivers , Water Quality , Animals , Ecosystem , Environmental Monitoring , France , Time Factors
6.
Environ Manage ; 55(6): 1343-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25832345

ABSTRACT

Rivers are complex systems for which it is hard to make reliable assessments of causes and responses to impairments. We present a holistic risk-based framework for river ecosystem assessment integrating all potential intervening processes and functions. Risk approaches allow us to deal with uncertainty both in the construction of indicators for magnitude of stressors and in the inference of environmental processes and their impairment. Yet, here we go further than simply replacing uncertainty by a risk factor. We introduce a more accurate and rigorous notion of risk with a transcription of uncertainty in causal relationships in probability distributions for the magnitude of impairment and the weight of different descriptors, with an associated confidence in the diagnostic. We discuss how Bayesian belief networks and Bayesian hierarchical inference allow us to deal with this risk concept to predict impairments and potential recovery of river ecosystems. We developed a comprehensive approach for river ecosystem assessment, which offers an appealing tool to facilitate diagnosis of the likely causes of impairment and predict future conditions. The ability of the risk approaches to integrate multi-scale quantitative and qualitative descriptors in the identification of multiple stressor sources and pathways in the stream network, and their impairment of specific processes and structures is illustrated for the national-level risk analysis for hydromorphology and pesticide pollution. Not only does the risk-based framework provide a more complete picture of environmental impairments, but it also offers a comprehensive, user-friendly tool to instruct the decision process.


Subject(s)
Ecosystem , Environmental Pollution/analysis , Pesticides/analysis , Rivers/chemistry , Bayes Theorem , Humans , Models, Theoretical , Risk Assessment , Risk Factors , Uncertainty
7.
Environ Manage ; 41(5): 625-39, 2008 May.
Article in English | MEDLINE | ID: mdl-18288520

ABSTRACT

Methods for defining and retrieving reference conditions for large rivers were explored with emphasis on hydromorphologic and biologic quality indicators. For a set of four large rivers in the European Western Plains ecoregion, i.e., the rivers Meuse, Loire, Allier, and Dordogne, reference reaches were selected based on geomorphologic characteristics. A survey of riparian land use, vegetation, and bed geometry was done for the selected reaches. Responses of the riparian landscape to hydromorphologic conditions were determined with a set of existing and newly developed measures of riparian dynamics and forest development. Strong correlations were observed at the reach and local levels between the ratios of width to depth and embankment and the developed measures of riparian dynamics and forest. Boundary conditions for riparian forest development were determined for the hydromorphologic and biologic indicators of riparian dynamics and vegetation structure. These conditions also proved useful for determining the presence of sustainable populations of Populus nigra and Salix purpurea. From this agreement between abiotic and biotic boundary conditions, a set of useful reference conditions was determined, and a framework for the definition of reference and good status conditions subsequently evolved. Finally, a proposal for assessment and monitoring the proposed indicators is discussed for its applicability.


Subject(s)
Ecosystem , Plants , Rivers , Conservation of Natural Resources , Environmental Monitoring , Europe , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...