Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139033

ABSTRACT

To date, the scientific literature on health variables for Escherichia coli antimicrobial resistance (AMR) has been investigated throughout several systematic reviews, often with a focus on only one aspect of the One Health variables: human, animal, or environment. The aim of this umbrella review is to conduct a systematic synthesis of existing evidence on Escherichia coli AMR in humans in the community from a One Health perspective. PubMed, EMBASE, and CINAHL were searched on "antibiotic resistance" and "systematic review" from inception until 25 March 2022 (PROSPERO: CRD42022316431). The methodological quality was assessed, and the importance of identified variables was tabulated across all included reviews. Twenty-three reviews were included in this study, covering 860 primary studies. All reviews were of (critically) low quality. Most reviews focused on humans (20), 3 on animals, and 1 on both human and environmental variables. Antibiotic use, urinary tract infections, diabetes, and international travel were identified as the most important human variables. Poultry farms and swimming in freshwater were identified as potential sources for AMR transmission from the animal and environmental perspectives. This umbrella review highlights a gap in high-quality literature investigating the time between variable exposure, AMR testing, and animal and environmental AMR variables.


Subject(s)
Escherichia coli Infections , One Health , Animals , Humans , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology
2.
Chem Rev ; 123(23): 13419-13440, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37971892

ABSTRACT

The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.


Subject(s)
DNA Replication , DNA , DNA/chemistry , Molecular Conformation
3.
J Phys Chem B ; 127(25): 5521-5540, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37312244

ABSTRACT

The link between the chemical stability of G-quadruplex (qDNA) structures and their roles in eukaryotic genomic maintenance processes has been an area of interest now for several decades. This Review seeks to demonstrate how single-molecule force-based techniques can provide insight into the mechanical stabilities of a variety of qDNA structures as well as their ability to interconvert between different conformations under conditions of stress. Atomic force microscopy (AFM) and magnetic and optical tweezers have been the primary tools used in these investigations and have been used to examine both free and ligand-stabilized G-quadruplex structures. These studies have shown that the degree of stabilization of G-quadruplex structures has a significant effect on the ability of nuclear machinery to bypass these roadblocks on DNA strands. This Review will illustrate how various cellular components including replication protein A (RPA), Bloom syndrome protein (BLM), and Pif1 helicases are capable of unfolding qDNA. Techniques such as single-molecule fluorescence resonance energy transfer (smFRET), often in conjunction with the aforementioned force-based techniques, have proven extremely effective at elucidating the factors underpinning the mechanisms by which these proteins unwind qDNA structures. We will provide insight into how single-molecule tools have facilitated the direct visualization of qDNA roadblocks and also showcase results obtained from experiments designed to examine the ability of G-quadruplexes to limit the access of specific cellular proteins normally associated with telomeres.


Subject(s)
G-Quadruplexes , DNA/chemistry , Nanotechnology , Microscopy, Atomic Force , Telomere , Biology
4.
Nucleic Acids Res ; 51(13): 6540-6553, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37254785

ABSTRACT

Bacteriophage T7 single-stranded DNA-binding protein (gp2.5) binds to and protects transiently exposed regions of single-stranded DNA (ssDNA) while dynamically interacting with other proteins of the replication complex. We directly visualize fluorescently labelled T7 gp2.5 binding to ssDNA at the single-molecule level. Upon binding, T7 gp2.5 reduces the contour length of ssDNA by stacking nucleotides in a force-dependent manner, suggesting T7 gp2.5 suppresses the formation of secondary structure. Next, we investigate the binding dynamics of T7 gp2.5 and a deletion mutant lacking 21 C-terminal residues (gp2.5-Δ21C) under various template tensions. Our results show that the base sequence of the DNA molecule, ssDNA conformation induced by template tension, and the acidic terminal domain from T7 gp2.5 significantly impact on the DNA binding parameters of T7 gp2.5. Moreover, we uncover a unique template-catalyzed recycling behaviour of T7 gp2.5, resulting in an apparent cooperative binding to ssDNA, facilitating efficient spatial redistribution of T7 gp2.5 during the synthesis of successive Okazaki fragments. Overall, our findings reveal an efficient binding mechanism that prevents the formation of secondary structures by enabling T7 gp2.5 to rapidly rebind to nearby exposed ssDNA regions, during lagging strand DNA synthesis.


Subject(s)
Bacteriophage T7 , Viral Proteins , Bacteriophage T7/genetics , DNA/metabolism , DNA Replication , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Molecular Conformation , Viral Proteins/metabolism
5.
Nucleic Acids Res ; 51(11): 5714-5742, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37125644

ABSTRACT

The bacterial RecF, RecO, and RecR proteins are an epistasis group involved in loading RecA protein into post-replication gaps. However, the targeting mechanism that brings these proteins to appropriate gaps is unclear. Here, we propose that targeting may involve a direct interaction between RecF and DnaN. In vivo, RecF is commonly found at the replication fork. Over-expression of RecF, but not RecO or a RecF ATPase mutant, is extremely toxic to cells. We provide evidence that the molecular basis of the toxicity lies in replisome destabilization. RecF over-expression leads to loss of genomic replisomes, increased recombination associated with post-replication gaps, increased plasmid loss, and SOS induction. Using three different methods, we document direct interactions of RecF with the DnaN ß-clamp and DnaG primase that may underlie the replisome effects. In a single-molecule rolling-circle replication system in vitro, physiological levels of RecF protein trigger post-replication gap formation. We suggest that the RecF interactions, particularly with DnaN, reflect a functional link between post-replication gap creation and gap processing by RecA. RecF's varied interactions may begin to explain how the RecFOR system is targeted to rare lesion-containing post-replication gaps, avoiding the potentially deleterious RecA loading onto thousands of other gaps created during replication.


Subject(s)
DNA-Binding Proteins , Escherichia coli Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Repair , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
6.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214928

ABSTRACT

Single-stranded DNA gaps form within the E. coli chromosome during replication, repair and recombination. However, information about the extent of ssDNA creation in the genome is limited. To complement a recent whole-genome sequencing study revealing ssDNA gap genomic distribution, size, and frequency, we used fluorescence microscopy to monitor the spatiotemporal dynamics of single-stranded DNA within live E. coli cells. The ssDNA was marked by a functional fluorescent protein fusion of the SSB protein that replaces the wild type SSB. During log-phase growth the SSB fusion produces a mixture of punctate foci and diffuse fluorescence spread throughout the cytosol. Many foci are clustered. Fluorescent markers of DNA polymerase III frequently co-localize with SSB foci, often localizing to the outer edge of the large SSB features. Novel SSB-enriched features form and resolve regularly during normal growth. UV irradiation induces a rapid increase in SSB foci intensity and produces large features composed of multiple partially overlapping foci. The results provide a critical baseline for further exploration of ssDNA generation during DNA metabolism. Alterations in the patterns seen in a mutant lacking RecB function tentatively suggest associations of particular SSB features with the repair of double strand breaks and post-replication gaps.

7.
Nucleic Acids Res ; 51(7): 3307-3326, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36938885

ABSTRACT

Genome duplication occurs while the template DNA is bound by numerous DNA-binding proteins. Each of these proteins act as potential roadblocks to the replication fork and can have deleterious effects on cells. In Escherichia coli, these roadblocks are displaced by the accessory helicase Rep, a DNA translocase and helicase that interacts with the replisome. The mechanistic details underlying the coordination with replication and roadblock removal by Rep remain poorly understood. Through real-time fluorescence imaging of the DNA produced by individual E. coli replisomes and the simultaneous visualization of fluorescently-labeled Rep, we show that Rep continually surveils elongating replisomes. We found that this association of Rep with the replisome is stochastic and occurs independently of whether the fork is stalled or not. Further, we visualize the efficient rescue of stalled replication forks by directly imaging individual Rep molecules as they remove a model protein roadblock, dCas9, from the template DNA. Using roadblocks of varying DNA-binding stabilities, we conclude that continuation of synthesis is the rate-limiting step of stalled replication rescue.


Subject(s)
DNA Helicases , Escherichia coli Proteins , DNA/metabolism , DNA Helicases/chemistry , DNA Replication , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry
8.
Nucleic Acids Res ; 51(1): e5, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36321650

ABSTRACT

The activity of enzymes is traditionally characterised through bulk-phase biochemical methods that only report on population averages. Single-molecule methods are advantageous in elucidating kinetic and population heterogeneity but are often complicated, time consuming, and lack statistical power. We present a highly-generalisable and high-throughput single-molecule assay to rapidly characterise proteins involved in DNA metabolism. The assay exclusively relies on changes in total fluorescence intensity of surface-immobilised DNA templates as a result of DNA synthesis, unwinding or digestion. Combined with an automated data-analysis pipeline, our method provides enzymatic activity data of thousands of molecules in less than an hour. We demonstrate our method by characterising three fundamentally different enzyme activities: digestion by the phage λ exonuclease, synthesis by the phage Phi29 polymerase, and unwinding by the E. coli UvrD helicase. We observe the previously unknown activity of the UvrD helicase to remove neutravidin bound to 5'-, but not 3'-ends of biotinylated DNA.


Subject(s)
DNA Helicases , DNA , DNA/metabolism , DNA Helicases/metabolism , DNA, Single-Stranded , Escherichia coli , Escherichia coli Proteins/metabolism , Kinetics
9.
Nat Commun ; 13(1): 7524, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473839

ABSTRACT

CHD4 is an essential, widely conserved ATP-dependent translocase that is also a broad tumour dependency. In common with other SF2-family chromatin remodelling enzymes, it alters chromatin accessibility by repositioning histone octamers. Besides the helicase and adjacent tandem chromodomains and PHD domains, CHD4 features 1000 residues of N- and C-terminal sequence with unknown structure and function. We demonstrate that these regions regulate CHD4 activity through different mechanisms. An N-terminal intrinsically disordered region (IDR) promotes remodelling integrity in a manner that depends on the composition but not sequence of the IDR. The C-terminal region harbours an auto-inhibitory region that contacts the helicase domain. Auto-inhibition is relieved by a previously unrecognized C-terminal SANT-SLIDE domain split by ~150 residues of disordered sequence, most likely by binding of this domain to substrate DNA. Our data shed light on CHD4 regulation and reveal strong mechanistic commonality between CHD family members, as well as with ISWI-family remodellers.


Subject(s)
Mitochondrial ADP, ATP Translocases
10.
Sci Adv ; 8(50): eadd0922, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36516244

ABSTRACT

The ability of heat shock protein 70 (Hsp70) molecular chaperones to remodel the conformation of their clients is central to their biological function; however, questions remain regarding the precise molecular mechanisms by which Hsp70 machinery interacts with the client and how this contributes toward efficient protein folding. Here, we used total internal reflection fluorescence (TIRF) microscopy and single-molecule fluorescence resonance energy transfer (smFRET) to temporally observe the conformational changes that occur to individual firefly luciferase proteins as they are folded by the bacterial Hsp70 system. We observed multiple cycles of chaperone binding and release to an individual client during refolding and determined that high rates of chaperone cycling improves refolding yield. Furthermore, we demonstrate that DnaJ remodels misfolded proteins via a conformational selection mechanism, whereas DnaK resolves misfolded states via mechanical unfolding. This study illustrates that the temporal observation of chaperone-assisted folding enables the elucidation of key mechanistic details inaccessible using other approaches.


Subject(s)
Escherichia coli Proteins , Humans , Escherichia coli Proteins/chemistry , Heat-Shock Proteins/metabolism , Escherichia coli/metabolism , Protein Folding , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/metabolism
11.
J Glob Antimicrob Resist ; 31: 386-390, 2022 12.
Article in English | MEDLINE | ID: mdl-36436824

ABSTRACT

OBJECTIVES: Efforts to monitor and combat antimicrobial resistance (AMR) are typically focused on the hospital-based laboratory setting. The aim of this study was to longitudinally examine and compare trends in AMR among urine Escherichia coli isolates from a private community-based laboratory and a public hospital-based laboratory in an Australian local health district. METHODS: A total of 108 262 urine E. coli isolates from a public hospital-based laboratory (N = 34 103) and a private community-based laboratory (N = 74 159) in a single health district between 2007-2019 were analysed. Linear regression was used to identify significance of change in AMR rates in both laboratories independently and detect any significant interaction of each setting in proportional change over the study period. RESULTS: Similar AMR trends were detected among urinary E. coli isolates in private community-based laboratory and public hospital-based laboratory settings over 12 y. AMR rates were consistently higher in the public hospital-based setting. Ampicillin was the only antibiotic for which the E. coli resistance trend did not significantly change over the time period in either laboratory setting. All other antibiotics showed a significant increase in AMR rates over time in both settings. CONCLUSIONS: AMR rates in both the private community-based laboratory and public hospital-based laboratory settings increased over time and were consistently higher in the public hospital-based laboratory setting. Since private laboratories handle the vast majority of pathology volumes in community outpatient settings in Australia, interventions incorporating the community-based laboratory setting are critical to addressing AMR in the community.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli Infections/drug therapy , Microbial Sensitivity Tests , Laboratories , Australia , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Hospitals
12.
Front Mol Biosci ; 9: 968424, 2022.
Article in English | MEDLINE | ID: mdl-36213113

ABSTRACT

Faithful DNA replication is essential for all life. A multi-protein complex called the replisome contains all the enzymatic activities required to facilitate DNA replication, including unwinding parental DNA and synthesizing two identical daughter molecules. Faithful DNA replication can be challenged by both intrinsic and extrinsic factors, which can result in roadblocks to replication, causing incomplete replication, genomic instability, and an increased mutational load. This increased mutational load can ultimately lead to a number of diseases, a notable example being cancer. A key example of a roadblock to replication is chemical modifications in the DNA caused by exposure to ultraviolet light. Protein dynamics are thought to play a crucial role to the molecular pathways that occur in the presence of such DNA lesions, including potential damage bypass. Therefore, many assays have been developed to study these dynamics. In this review, we discuss three methods that can be used to study protein dynamics during replisome-lesion encounters in replication reactions reconstituted from purified proteins. Specifically, we focus on ensemble biochemical assays, single-molecule fluorescence, and cryo-electron microscopy. We discuss two key model DNA replication systems, derived from Escherichia coli and Saccharomyces cerevisiae. The main methods of choice to study replication over the last decades have involved biochemical assays that rely on ensemble averaging. While these assays do not provide a direct readout of protein dynamics, they can often be inferred. More recently, single-molecule techniques including single-molecule fluorescence microscopy have been used to visualize replisomes encountering lesions in real time. In these experiments, individual proteins can be fluorescently labeled in order to observe the dynamics of specific proteins during DNA replication. Finally, cryo-electron microscopy can provide detailed structures of individual replisome components, which allows functional data to be interpreted in a structural context. While classic cryo-electron microscopy approaches provide static information, recent developments such as time-resolved cryo-electron microscopy help to bridge the gap between static structures and dynamic single-molecule techniques by visualizing sequential steps in biochemical pathways. In combination, these techniques will be capable of visualizing DNA replication and lesion encounter dynamics in real time, whilst observing the structural changes that facilitate these dynamics.

13.
Microbiologyopen ; 11(5): e1316, 2022 10.
Article in English | MEDLINE | ID: mdl-36314749

ABSTRACT

Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies. We examined genetic variants of Escherichia coli that combined antibiotic-resistance determinants with DNA repair defects. We observed that defects in the double-strand break repair pathway led to significant resensitization toward five bactericidal antibiotics representing different functional classes. Effects ranged from partial to full resensitization. For ciprofloxacin and nitrofurantoin, sensitization manifested as a reduction in the minimum inhibitory concentration. For kanamycin and trimethoprim, sensitivity manifested through increased rates of killing at high antibiotic concentrations. For ampicillin, repair defects dramatically reduced antibiotic tolerance. Ciprofloxacin, nitrofurantoin, and trimethoprim induce the promutagenic SOS response. Disruption of double-strand break repair strongly dampened the induction of SOS by these antibiotics. Our findings suggest that if break-repair inhibitors can be developed they could resensitize antibiotic-resistant bacteria to multiple classes of existing antibiotics and may suppress the development of de novo antibiotic-resistance mutations.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Nitrofurantoin/metabolism , Nitrofurantoin/pharmacology , DNA Repair , Ciprofloxacin/pharmacology , Microbial Sensitivity Tests , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Trimethoprim/metabolism , Trimethoprim/pharmacology
14.
Methods Enzymol ; 672: 299-315, 2022.
Article in English | MEDLINE | ID: mdl-35934481

ABSTRACT

Single-molecule imaging studies using long linear DNA substrates have revealed unanticipated insights into the dynamics of multi-protein systems. The use of long DNA substrates allows for the study of protein-DNA interactions with observation of the movement and behavior of proteins over distances accessible by fluorescence microscopy. Generalized methods can be exploited to generate and optimize a variety of linear DNA substrates with plasmid DNA as a simple starting point using standard biochemical techniques. Here, we present protocols to produce high-quality plasmid-based 36-kb linear DNA substrates that support DNA replication by the Escherichia coli replisome and that contain chemical lesions at well-defined positions. These substrates can be used to visualize replisome-lesion encounters at the single-molecule level, providing mechanistic details of replisome stalling and dynamics occurring during replication rescue and restart.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase , DNA/metabolism , DNA Polymerase III , DNA-Directed DNA Polymerase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism
15.
Nucleic Acids Res ; 50(12): 6854-6869, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35736210

ABSTRACT

Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.


Subject(s)
Escherichia coli , Mutagens , Rec A Recombinases , DNA-Directed DNA Polymerase/metabolism , Escherichia coli/metabolism , Phylogeny , Rec A Recombinases/metabolism
16.
Nucleic Acids Res ; 50(10): 5688-5712, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35641110

ABSTRACT

Elongation by RNA polymerase is dynamically modulated by accessory factors. The transcription-repair coupling factor (TRCF) recognizes paused/stalled RNAPs and either rescues transcription or initiates transcription termination. Precisely how TRCFs choose to execute either outcome remains unclear. With Escherichia coli as a model, we used single-molecule assays to study dynamic modulation of elongation by Mfd, the bacterial TRCF. We found that nucleotide-bound Mfd converts the elongation complex (EC) into a catalytically poised state, presenting the EC with an opportunity to restart transcription. After long-lived residence in this catalytically poised state, ATP hydrolysis by Mfd remodels the EC through an irreversible process leading to loss of the RNA transcript. Further, biophysical studies revealed that the motor domain of Mfd binds and partially melts DNA containing a template strand overhang. The results explain pathway choice determining the fate of the EC and provide a molecular mechanism for transcription modulation by TRCF.


Subject(s)
Bacterial Proteins , DNA Repair , Escherichia coli , Transcription Factors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
17.
ACS Nano ; 16(4): 6455-6467, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35316035

ABSTRACT

Biomolecular complexes can form stable assemblies yet can also rapidly exchange their subunits to adapt to environmental changes. Simultaneously allowing for both stability and rapid exchange expands the functional capacity of biomolecular machines and enables continuous function while navigating a complex molecular world. Inspired by biology, we design and synthesize a DNA origami receptor that exploits multivalent interactions to form stable complexes that are also capable of rapid subunit exchange. The system utilizes a mechanism first outlined in the context of the DNA replisome, known as multisite competitive exchange, and achieves a large separation of time scales between spontaneous subunit dissociation, which requires days, and rapid subunit exchange, which occurs in minutes. In addition, we use the DNA origami receptor to demonstrate stable interactions with rapid exchange of both DNA and protein subunits, thus highlighting the applicability of our approach to arbitrary molecular cargo, an important distinction with canonical toehold exchange between single-stranded DNA. We expect this study to benefit future studies that use DNA origami structures to exploit multivalent interactions for the design and synthesis of a wide range of possible kinetic behaviors.


Subject(s)
Nanostructures , Nanotechnology , DNA/chemistry , DNA, Single-Stranded , Nanostructures/chemistry , Nucleic Acid Conformation
18.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: mdl-35215863

ABSTRACT

Chikungunya virus (CHIKV) presents a major burden on healthcare systems worldwide, but specific treatment remains unavailable. Attachment and fusion of CHIKV to the host cell membrane is mediated by the E1/E2 protein spikes. We used an in vitro single-particle fusion assay to study the effect of the potent, neutralizing antibody CHK-152 on CHIKV binding and fusion. We find that CHK-152 shields the virions, inhibiting interaction with the target membrane and inhibiting fusion. The analysis of the ratio of bound antibodies to epitopes implied that CHIKV fusion is a highly cooperative process. Further, dissociation of the antibody at lower pH results in a finely balanced kinetic competition between inhibition and fusion, suggesting a window of opportunity for the spike proteins to act and mediate fusion, even in the presence of the antibody.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya virus/immunology , Chikungunya virus/physiology , Virus Internalization , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Cell Line , Hydrogen-Ion Concentration , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virion/physiology , Virus Attachment
19.
DNA Repair (Amst) ; 108: 103229, 2021 12.
Article in English | MEDLINE | ID: mdl-34601381

ABSTRACT

Helicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches. Together, these investigations have constructed a framework for understanding the mechanisms that maintain genomic integrity in cells. This review discusses recent single-molecule insights into molecular mechanisms of prokaryotic helicases and translocases.


Subject(s)
Bacteria/enzymology , DNA Helicases/metabolism , DNA Repair , DNA Replication , Recombination, Genetic , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/metabolism
20.
Front Mol Biosci ; 8: 741718, 2021.
Article in English | MEDLINE | ID: mdl-34513934

ABSTRACT

Helicases are molecular motors that translocate along single-stranded DNA and unwind duplex DNA. They rely on the consumption of chemical energy from nucleotide hydrolysis to drive their translocation. Specialized helicases play a critically important role in DNA replication by unwinding DNA at the front of the replication fork. The replicative helicases of the model systems bacteriophages T4 and T7, Escherichia coli and Saccharomyces cerevisiae have been extensively studied and characterized using biochemical methods. While powerful, their averaging over ensembles of molecules and reactions makes it challenging to uncover information related to intermediate states in the unwinding process and the dynamic helicase interactions within the replisome. Here, we describe single-molecule methods that have been developed in the last few decades and discuss the new details that these methods have revealed about replicative helicases. Applying methods such as FRET and optical and magnetic tweezers to individual helicases have made it possible to access the mechanistic aspects of unwinding. It is from these methods that we understand that the replicative helicases studied so far actively translocate and then passively unwind DNA, and that these hexameric enzymes must efficiently coordinate the stepping action of their subunits to achieve unwinding, where the size of each step is prone to variation. Single-molecule fluorescence microscopy methods have made it possible to visualize replicative helicases acting at replication forks and quantify their dynamics using multi-color colocalization, FRAP and FLIP. These fluorescence methods have made it possible to visualize helicases in replication initiation and dissect this intricate protein-assembly process. In a similar manner, single-molecule visualization of fluorescent replicative helicases acting in replication identified that, in contrast to the replicative polymerases, the helicase does not exchange. Instead, the replicative helicase acts as the stable component that serves to anchor the other replication factors to the replisome.

SELECTION OF CITATIONS
SEARCH DETAIL
...