Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 150: 198-206, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29842867

ABSTRACT

Honeybee (Apis mellifera) venom (HBV) represents an ideal model to study the role of particular venom components in allergic reactions in sensitized individuals as well as in the eusociality of Hymenoptera species. The aim of this study was to further characterize the HBV components C1q-like protein (C1q) and PDGF/VEGF-like factor 1 (PVF1). C1q and PVF1 were produced as recombinant proteins in insect cells. Their allergenic properties were examined by determining the level of specific IgE antibodies in the sera of HBV-allergic patients (n = 26) as well as by their capacity to activate patients' basophils (n = 11). Moreover, the transcript heterogeneity of PVF1 was analyzed. It could be demonstrated that at least three PVF1 variants are present in the venom gland, which all result from alternative splicing of one transcript. Additionally, recombinant C1q and PVF1 from Spodoptera frugiperda insect cells exhibited specific IgE reactivity with approximately 38.5% of sera of HBV-allergic patients. Interestingly, both proteins were unable to activate basophils of the patients, questioning their role in the context of clinically relevant sensitization. Recombinant C1q and PVF1 can build the basis for a deeper understanding of the molecular mechanisms of Hymenoptera venoms. Moreover, the conflicting results between IgE sensitization and lack of basophil activation, might in the future contribute to the identification of factors that determine the allergenic potential of proteins.


Subject(s)
Bee Venoms/chemistry , Bees/physiology , Hypersensitivity , Insect Proteins/chemistry , Insect Proteins/toxicity , Allergens/chemistry , Allergens/toxicity , Animals , Baculoviridae , Cloning, Molecular , Gene Expression Regulation , Humans , Insect Bites and Stings , Sf9 Cells
2.
Toxins (Basel) ; 7(11): 4468-83, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26529016

ABSTRACT

Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.


Subject(s)
Bee Venoms/chemistry , Bee Venoms/genetics , Bees/chemistry , Proteome , Animals , Antithrombin III/chemistry , Antithrombin III/genetics , Cyclotrons , Environment , Fatty Acids/chemistry , Female , Insect Bites and Stings/drug therapy , Male , Peptide Library , Seasons , Serine Proteases/chemistry , Serine Proteases/genetics , Species Specificity , Tandem Mass Spectrometry
3.
Toxicon ; 102: 81-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26071081

ABSTRACT

Within the Apidae, the largest family of bees with over 5600 described species, the honeybee is the sole species with a well studied venom proteome. So far, only little research has focused on bumblebee venom. Recently, the genome sequence of the European large earth bumblebee (Bombus terrestris) became available and this allowed the first in-depth proteomic analysis of its venom composition. We identified 57 compounds, with 52 of them never described in bumblebee venom. Remarkably, 72% of the detected compounds were found to have a honeybee venom homolog, which reflects the similar defensive function of both venoms and the high degree of homology between both genomes. However, both venoms contain a selection of species-specific toxins, revealing distinct damaging effects that may have evolved in response to species-specific attackers. Further, this study extends the list of potential venom allergens. The availability of both the honeybee and bumblebee venom proteome may help to develop a strategy that solves the current issue of false double sensitivity in allergy diagnosis, which is caused by cross-reactivity between both venoms. A correct diagnosis is important as it is recommended to perform an immunotherapy with venom of the culprit species.


Subject(s)
Bee Venoms/chemistry , Bees , Insect Proteins/analysis , Peptide Library , Proteome/analysis , Proteomics , Animals , Ligands , Species Specificity
4.
Genome Biol ; 16: 76, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25908251

ABSTRACT

BACKGROUND: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. RESULTS: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. CONCLUSIONS: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.


Subject(s)
Bees/genetics , Behavior, Animal , Genes, Insect , Social Behavior , Animals , Bee Venoms/genetics , Bees/classification , Bees/physiology , Chemoreceptor Cells/metabolism , Chromosome Mapping , Databases, Genetic , Evolution, Molecular , Female , Gene Expression Regulation , Gene Rearrangement , Genomics , Interspersed Repetitive Sequences , Male , Open Reading Frames , Polymorphism, Single Nucleotide , Selenoproteins/genetics , Selenoproteins/metabolism , Sequence Analysis, DNA , Species Specificity , Synteny
5.
Mol Immunol ; 63(2): 449-55, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25451974

ABSTRACT

Api m 10 has recently been established as novel major allergen that is recognized by more than 60% of honeybee venom (HBV) allergic patients. Previous studies suggest Api m 10 protein heterogeneity which may have implications for diagnosis and immunotherapy of HBV allergy. In the present study, RT-PCR revealed the expression of at least nine additional Api m 10 transcript isoforms by the venom glands. Two distinct mechanisms are responsible for the generation of these isoforms: while the previously known variant 2 is produced by an alternative splicing event, novel identified isoforms are intragenic chimeric transcripts. To the best of our knowledge, this is the first report of the identification of chimeric transcripts generated by the honeybee. By a retrospective proteomic analysis we found evidence for the presence of several of these isoforms in the venom proteome. Additionally, we analyzed IgE reactivity to different isoforms by protein array technology using sera from HBV allergic patients, which revealed that IgE recognition of Api m 10 is both isoform- and patient-specific. While it was previously demonstrated that the majority of HBV allergic patients display IgE reactivity to variant 2, our study also shows that some patients lacking IgE antibodies for variant 2 display IgE reactivity to two of the novel identified Api m 10 variants, i.e. variants 3 and 4.


Subject(s)
Allergens/immunology , Bee Venoms/immunology , Bees/immunology , Immunoglobulin E/immunology , Protein Array Analysis/methods , Allergens/chemistry , Allergens/genetics , Amino Acid Sequence , Animals , Exons/genetics , Gene Expression Regulation , Humans , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Molecular Sequence Data , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/immunology , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment
6.
J Proteomics ; 99: 169-78, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24606962

ABSTRACT

At present, 30 compounds have been described in the venom of the honeybee, and 16 of them were confirmed by mass spectrometry. Previous studies typically combined 2-D PAGE with MALDI-TOF/TOF MS, a technology which now appears to lack sensitivity to detect additional venom compounds. Here, we report an in-depth study of the honeybee venom proteome using a combinatorial peptide ligand library sample pretreatment to enrich for minor components followed by shotgun LC-FT-ICR MS analysis. This strategy revealed an unexpectedly rich venom composition: in total 102 proteins and peptides were found, with 83 of them never described in bee venom samples before. Based on their predicted function and subcellular location, the proteins could be divided into two groups. A group of 33 putative toxins is proposed to contribute to venom activity by exerting toxic functions or by playing a role in social immunity. The other group, considered as venom trace molecules, appears to be secreted for their functions in the extracellular space, or is unintentionally secreted by the venom gland cells due to insufficient protein recycling or co-secretion with other compounds. In conclusion, our approach allowed to explore the hidden honeybee venom proteome and extended the list of potential venom allergens. BIOLOGICAL SIGNIFICANCE: This study dug deeper into the complex honeybee venom proteome than ever before by applying a highly performing sample pretreatment and mass spectrometric technology. We present putative biological functions for all identified compounds, largely extending our knowledge of the venom toxicity. In addition, this study offers a long list of potential new venom allergens.


Subject(s)
Bee Venoms/metabolism , Bees/metabolism , Insect Proteins/metabolism , Proteome/metabolism , Animals , Peptide Library , Proteomics/methods
7.
Expert Rev Clin Immunol ; 10(3): 375-84, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24490811

ABSTRACT

For most people Hymenoptera stings result in transient and bothersome local inflammatory responses characterized by pain, itching, redness and swelling. In contrast, for those presenting an IgE-mediated allergic reaction, a re-sting may cause life-threatening reactions. In such patients, correct diagnosis is an absolute prerequisite for effective management, i.e. venom-specific immunotherapy. Generally, identification of the offending insect involves a detailed history along with quantification of venom-specific IgE antibodies and venom skin tests. Unfortunately, due to uncertainties associated with both tests, correct diagnosis is not always straightforward. This review summarizes the potentials and limitations of the various in vitro tests that are currently being used in the diagnosis of Hymenoptera venom allergy. Particular attention is paid to the potential of novel cellular tests such as basophil activation tests and component-resolved diagnosis with recombinant venom allergens in the diagnostic approach of patients with difficult diagnosis, i.e. cases in whom traditional venom specific IgE and skin tests yield equivocal or negative results. Finally, this review also covers the recent discoveries in the field of proteome research of Hymenoptera venoms and the selection of cell types for recombinant allergens production.


Subject(s)
Allergens , Arthropod Venoms , Desensitization, Immunologic/methods , Hypersensitivity/diagnosis , Recombinant Proteins , Allergens/immunology , Animals , Arthropod Venoms/immunology , Basophil Degranulation Test , Humans , Hymenoptera/immunology , Hypersensitivity/immunology , Hypersensitivity/therapy , Immunoglobulin E/blood , Immunologic Tests/trends , Proteomics , Recombinant Proteins/immunology , Skin Tests
8.
Gen Comp Endocrinol ; 197: 1-4, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24333651

ABSTRACT

Eusocial insect societies display a remarkable reproductive division of labor between a single fertile queen and thousands of largely sterile workers. In most species, however, the workers retain the capacity to reproduce, particularly in queenless colonies where typically many workers lay eggs. As yet, the molecular determinants that initiate this shift in worker fertility are still poorly documented. By using RNA interference we here demonstrate that the knockdown of epidermal growth factor receptor, a gene which was previously shown to be involved in queen-worker caste differentiation, also induces reproduction in worker honeybees (Apis mellifera). These data show that worker fertility and queen-worker caste determination partly rely on the same gene regulatory networks, thereby providing a major breakthrough in our understanding of the molecular determinants of the social insects' spectacular reproductive division of labor.


Subject(s)
Bees/physiology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Pheromones/metabolism , Signal Transduction/physiology , Animals , Female , Fertility/physiology , RNA Interference , Reproduction/physiology
9.
PLoS One ; 6(6): e20043, 2011.
Article in English | MEDLINE | ID: mdl-21698281

ABSTRACT

The eusocial societies of honeybees, where the queen is the only fertile female among tens of thousands sterile worker bees, have intrigued scientists for centuries. The proximate factors, which cause the inhibition of worker bee ovaries, remain largely unknown; as are the factors which cause the activation of worker ovaries upon the loss of queen and brood in the colony. In an attempt to reveal key players in the regulatory network, we made a proteomic comparison of hemolymph profiles of workers with completely activated ovaries vs. rudimentary ovaries. An unexpected finding of this study is the correlation between age matched worker sterility and the enrichment of Picorna-like virus proteins. Fertile workers, on the other hand, show the upregulation of potential components of the immune system. It remains to be investigated whether viral infections contribute to worker sterility directly or are the result of a weaker immune system of sterile workers.


Subject(s)
Bees/virology , Fertility , Hemolymph/virology , Proteomics , Amino Acid Sequence , Animals , Bees/physiology , Electrophoresis, Gel, Two-Dimensional , Female , Molecular Sequence Data , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...