Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Cell ; 41(3): 490-504, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36868224

ABSTRACT

Myeloid cells, comprised of macrophages, dendritic cells, monocytes, and granulocytes, represent a major component of the tumor microenvironment (TME) and are critically involved in regulation of tumor progression and metastasis. In recent years, single-cell omics technologies have identified multiple phenotypically distinct subpopulations. In this review, we discuss recent data and concepts suggesting that the biology of myeloid cells is largely defined by a very limited number of functional states that transcend the narrowly defined cell populations. These functional states are primarily centered around classical and pathological states of activation, with the latter state commonly defined as myeloid-derived suppressor cells. We discuss the concept that lipid peroxidation of myeloid cells represents a major mechanism that governs their pathological state of activation in the TME. Lipid peroxidation is associated with ferroptosis mediating suppressive activity of these cells and thus could be considered an attractive target for therapeutic intervention.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Myeloid Cells , Neoplasms/therapy , Macrophages/pathology , Monocytes/pathology , Myeloid-Derived Suppressor Cells/pathology , Tumor Microenvironment
2.
PLoS Comput Biol ; 15(5): e1006980, 2019 05.
Article in English | MEDLINE | ID: mdl-31042706

ABSTRACT

Antibodies are an important class of therapeutics that have significant clinical impact for the treatment of severe diseases. Computational tools to support antibody drug discovery have been developing at an increasing rate over the last decade and typically rely upon a predetermined co-crystal structure of the antibody bound to the antigen for structural predictions. Here, we show an example of successful in silico affinity maturation of a hybridoma derived antibody, AB1, using just a homology model of the antibody fragment variable region and a protein-protein docking model of the AB1 antibody bound to the antigen, murine CCL20 (muCCL20). In silico affinity maturation, together with alanine scanning, has allowed us to fine-tune the protein-protein docking model to subsequently enable the identification of two single-point mutations that increase the affinity of AB1 for muCCL20. To our knowledge, this is one of the first examples of the use of homology modelling and protein docking for affinity maturation and represents an approach that can be widely deployed.


Subject(s)
Antibody Affinity/physiology , Computational Biology/methods , Amino Acid Sequence , Animals , Antibodies/chemistry , Chemokine CCL20 , Computer Simulation , Drug Design , Immunoglobulin Variable Region , Mice , Models, Molecular , Protein Binding , Protein Conformation
3.
Mol Cancer Ther ; 16(8): 1576-1587, 2017 08.
Article in English | MEDLINE | ID: mdl-28522587

ABSTRACT

Antibody-drug conjugates (ADC) are used to selectively deliver cytotoxic agents to tumors and have the potential for increased clinical benefit to cancer patients. 5T4 is an oncofetal antigen overexpressed on the cell surface in many carcinomas on both bulk tumor cells as well as cancer stem cells (CSC), has very limited normal tissue expression, and can internalize when bound by an antibody. An anti-5T4 antibody was identified and optimized for efficient binding and internalization in a target-specific manner, and engineered cysteines were incorporated into the molecule for site-specific conjugation. ADCs targeting 5T4 were constructed by site-specifically conjugating the antibody with payloads that possess different mechanisms of action, either a DNA cross-linking pyrrolobenzodiazepine (PBD) dimer or a microtubule-destabilizing tubulysin, so that each ADC had a drug:antibody ratio of 2. The resulting ADCs demonstrated significant target-dependent activity in vitro and in vivo; however, the ADC conjugated with a PBD payload (5T4-PBD) elicited more durable antitumor responses in vivo than the tubulysin conjugate in xenograft models. Likewise, the 5T4-PBD more potently inhibited the growth of 5T4-positive CSCs in vivo, which likely contributed to its superior antitumor activity. Given that the 5T4-PBD possessed both potent antitumor activity as well as anti-CSC activity, and thus could potentially target bulk tumor cells and CSCs in target-positive indications, it was further evaluated in non-GLP rat toxicology studies that demonstrated excellent in vivo stability with an acceptable safety profile. Taken together, these preclinical data support further development of 5T4-PBD, also known as MEDI0641, against 5T4+ cancer indications. Mol Cancer Ther; 16(8); 1576-87. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Benzodiazepines/therapeutic use , Immunoconjugates/therapeutic use , Pyrroles/therapeutic use , Animals , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Benzodiazepines/adverse effects , Benzodiazepines/pharmacology , Cell Line, Tumor , Humans , Immunoconjugates/adverse effects , Immunoconjugates/pharmacology , Male , Mice , Mice, Nude , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Pyrroles/adverse effects , Pyrroles/pharmacology , Rats, Sprague-Dawley , Tubulin Modulators/adverse effects , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Xenograft Model Antitumor Assays
4.
Biomacromolecules ; 17(5): 1818-33, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27007881

ABSTRACT

Targeted nanomedicines are a promising technology for treatment of disease; however, preparation and characterization of well-defined protein-nanoparticle systems remain challenging. Here, we describe a platform technology to prepare antibody binding fragment (Fab)-bearing nanoparticles and an accompanying real-time cell-based assay to determine their cellular uptake compared to monoclonal antibodies (mAbs) and Fabs. The nanoparticle platform was composed of core-cross-linked polyion complex (PIC) micelles prepared from azide-functionalized PEG-b-poly(amino acids), that is, azido-PEG-b-poly(l-lysine) [N3-PEG-b-PLL] and azido-PEG-b-poly(aspartic acid) [N3-PEG-b-PAsp]. These PIC micelles were 30 nm in size and contained approximately 10 polymers per construct. Fabs were derived from an antibody binding the EphA2 receptor expressed on cancer cells and further engineered to contain a reactive cysteine for site-specific attachment and a cleavable His tag for purification from cell culture expression systems. Azide-functionalized micelles and thiol-containing Fab were linked using a heterobifunctional cross-linker (FPM-PEG4-DBCO) that contained a fluorophenyl-maleimide for stable conjugation to Fabs thiols and a strained alkyne (DBCO) group for coupling to micelle azide groups. Analysis of Fab-PIC micelle conjugates by fluorescence correlation spectroscopy, size exclusion chromatography, and UV-vis absorbance determined that each nanoparticle contained 2-3 Fabs. Evaluation of cellular uptake in receptor positive cancer cells by real-time fluorescence microscopy revealed that targeted Fab-PIC micelles achieved higher cell uptake than mAbs and Fabs, demonstrating the utility of this approach to identify targeted nanoparticle constructs with unique cellular internalization properties.


Subject(s)
Antibodies, Monoclonal/chemistry , Cross-Linking Reagents/chemistry , Immunoglobulin Fab Fragments/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Prostatic Neoplasms/metabolism , Receptor, EphA2/metabolism , Antibodies, Monoclonal/metabolism , Humans , Immunoglobulin Fab Fragments/metabolism , Male , Micelles , Polymers/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL